Existence and concentration of positive solutions for a critical p&q equation

被引:18
作者
Costa, Gustavo S. [1 ]
Figueiredo, Giovany M. [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Critical exponent; p&q Laplacian operator; Variational methods; Q ELLIPTIC PROBLEMS; BOUND-STATES; R-N; MULTIPLICITY;
D O I
10.1515/anona-2020-0190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show existence and concentration results for a class of p&q critical problems given by -div (a (epsilon(p)vertical bar del u vertical bar(p)) epsilon(p)vertical bar del u vertical bar(p)(-2)del u) + V(z)b (vertical bar u vertical bar(p)) vertical bar u vertical bar(p-2) u = f(u) + vertical bar u vertical bar(q)*(-2) u in R-N, where u is an element of W-1,W-p(R-N) boolean AND W-1,W-q(R-N), epsilon > 0 is a small parameter, 1 < p <= q < N, N >= 2 and q* = Nq/(N-q). The potential V is positive and f is a superlinear function of C-1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer's associated to Lions' Concentration and Compactness Principle in order to overcome the lack of compactness.
引用
收藏
页码:243 / 267
页数:25
相关论文
共 33 条
[1]  
Alves CO, 2016, ELECTRON J DIFFER EQ
[2]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[3]  
Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
[4]   Local mountain-pass for a class of elliptic problems in RN involving critical growth [J].
Alves, CO ;
do O, JM ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (04) :495-510
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
Ambrosio V., MULTIPLE SOLUTIONS C
[7]  
Ambrosio V, 2021, Z ANGEW MATH PHYS, V72, DOI 10.1007/s00033-020-01466-7
[8]   Fractional double-phase patterns: concentration and multiplicity of solutions [J].
Ambrosio, Vincenzo ;
Radulescu, Vicentiu D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 :101-145
[9]   Fractional p&q Laplacian Problems in RN with Critical Growth [J].
Ambrosio, Vincenzo .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (03) :289-314
[10]  
[Anonymous], 1997, Minimax Theorems