Every Separable Complex Frechet Space with a Continuous Norm is Isomorphic to a Space of Holomorphic Functions

被引:1
|
作者
Bonet, Jose [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada IUMPA, E-46071 Valencia, Spain
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2021年 / 64卷 / 01期
关键词
Spaces of holomorphic functions; Frechet spaces; continuous norm; bounded approximation property; C-INFINITY-FUNCTIONS;
D O I
10.4153/S000843952000017X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending a result of Mashreghi and Ransford, we prove that every complex separable infinite-dimensional Frechet space with a continuous norm is isomorphic to a space continuously included in a space of holomorphic functions on the unit disc or the complex plane, which contains the polynomials as a dense subspace. As a consequence, we deduce the existence of nuclear Frechet spaces of holomorphic functions without the bounded approximation.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 1 条
  • [1] CHAOS FOR CONVOLUTION OPERATORS ON THE SPACE OF ENTIRE FUNCTIONS OF INFINITELY MANY COMPLEX VARIABLES
    Caraballo, Blas M.
    Favaro, Vinicius V.
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (02): : 237 - 251