Photoinhibition of Photosystem I in field-grown barley (Hordeum vulgare L.):: Induction, recovery and acclimation

被引:64
|
作者
Bernhard Teicher, H [1 ]
Moller, BL [1 ]
Scheller, HV [1 ]
机构
[1] Royal Vet & Agr Univ, Dept Plant Biol, Plant Biochem Lab, Ctr Mol Plant Physiol, DK-1871 Frederiksberg C, Denmark
关键词
cold stress; chilling stress; cyclic electron flow; light stress; NDH; photodamage;
D O I
10.1023/A:1026524302191
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effects of exposure of a field-grown winter cultivar of barley (Hordeum vulgare L.) to Photosystem I (PS I) photoinhibitory conditions in the form of bright day-light combined with chilling conditions were investigated. PS I photoinhibition was manifested by damage to the Fe-S centers of PS I and to the PS I-A/B polypeptides. Up to 20% of the PS I complexes were photoinactivated. Upon transfer to room temperature, the plants partially recovered from PS I photoinhibition, although damage was still detectable after one week. These results demonstrate that PS I photoinhibition is a physiologically relevant phenomenon in chilling-tolerant plants grown under field conditions. In order to study the induction of cyclic electron transport around PS I by PS I photoinhibitory conditions, antibodies raised against the NDH-I subunit of the NDH complex (a component of cyclic electron transport) were used to measure NDH levels in the exposed plants. A marked increase in the amount of NDH complex and a corresponding increase in NADPH dehydrogenase activity in the thylakoids were observed. The data indicate that the response to PS I-photoinhibitory conditions may involve regulated changes in cyclic electron transport around PS I.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 50 条
  • [31] ACHIEVEMENTS AND PROBLEMS IN THE WEED CONTROL IN BARLEY (Hordeum vulgare L.)
    Georgiev, Mitko
    Delchev, Grozi
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2016, 59 : 294 - 297
  • [32] BIOMASS OF SPRING BARLEY (Hordeum vulgare L.) IN RELATION TO FERTILISING
    Sporek, Monika
    Ciesielczuk, Tomasz
    ECOLOGICAL CHEMISTRY AND ENGINEERING A-CHEMIA I INZYNIERIA EKOLOGICZNA A, 2016, 23 (04): : 443 - 452
  • [33] Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.)
    Chandler, Peter M.
    Harding, Carol A.
    Ashton, Anthony R.
    Mulcair, Mark D.
    Dixon, Nicholas E.
    Mander, Lewis N.
    MOLECULAR PLANT, 2008, 1 (02) : 285 - 294
  • [34] Genetics of yield and its components in barley (Hordeum vulgare L.)
    Prakash, V
    Sastry, EVD
    ANNALS OF ARID ZONE, 1997, 36 (01) : 43 - 46
  • [35] SIRE1 retrotransposons in barley (Hordeum vulgare L.)
    Cakmak, B.
    Marakli, S.
    Gozukirmizi, N.
    RUSSIAN JOURNAL OF GENETICS, 2015, 51 (07) : 661 - 672
  • [36] Inheritance of spot blotch resistance in barley (Hordeum vulgare L.)
    Singh, Sarvjeet
    Singh, Harvinder
    Sharma, Achla
    Meeta, Madhu
    Singh, Baljit
    Joshi, Neha
    Grover, Pooja
    Al-Yassin, Adnan
    Kumar, Shiv
    CANADIAN JOURNAL OF PLANT SCIENCE, 2014, 94 (07) : 1203 - 1209
  • [37] Apoplast Acidification in Growing Barley (Hordeum vulgare L.) Leaves
    Visnovitz, Tamas
    Touati, Mostefa
    Miller, Anthony J.
    Fricke, Wieland
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (01) : 131 - 139
  • [38] Transformation of barley (Hordeum vulgare L.) with cytokinin dehydrogenase gene
    Vyroubalova, Sarka
    Ohnoutkova, Ludmila
    Galuszka, Petr
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2008, 44 : S68 - S68
  • [39] Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.)
    Karsai, I
    Meszaros, K
    Bedo, Z
    Hayes, PM
    Pan, A
    Chen, F
    ACTA BIOLOGICA HUNGARICA, 1997, 48 (01): : 67 - 76
  • [40] Genetic architecture of quantitative traits in barley (Hordeum vulgare L.)
    Raikwar, Rudrasen Singh
    Upadhyay, A. K.
    Gautam, U. S.
    Singh, V. K.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2014, 74 (01) : 93 - 97