Quantum Interference in Graphene Nanoconstrictions

被引:75
作者
Gehring, Pascal [1 ]
Sadeghi, Hatef [2 ]
Sangtarash, Sara [2 ]
Lau, Chit Siong [1 ]
Liu, Junjie [1 ]
Ardavan, Arzhang [3 ]
Warner, Jamie H. [1 ]
Lambert, Colin J. [2 ]
Briggs, G. Andrew. D. [1 ]
Mol, Jan A. [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[2] Univ Lancaster, Dept Phys, Quantum Technol Ctr, Lancaster LA1 4YB, England
[3] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
Graphene; quantum interference; Fano resonance; break junction; Fabry-Perot; FANO RESONANCES; ELECTRONIC TRANSPORT; CONFINEMENT; TRANSISTORS; COHERENCE;
D O I
10.1021/acs.nanolett.6b01104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Perot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Perot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.
引用
收藏
页码:4210 / 4216
页数:7
相关论文
共 51 条
[1]   Gate-defined quantum confinement in suspended bilayer graphene [J].
Allen, M. T. ;
Martin, J. ;
Yacoby, A. .
NATURE COMMUNICATIONS, 2012, 3
[2]   Observation of Fano resonances in single-wall carbon nanotubes -: art. no. 195408 [J].
Babic, B ;
Schönenberger, C .
PHYSICAL REVIEW B, 2004, 70 (19) :1-7
[3]   Weak localization scattering lengths in epitaxial, and CVD graphene [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Yakimova, R. ;
Lin, C. -T. ;
Li, L. -J. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2012, 86 (23)
[4]   Quantum Dots at Room Temperature Carved out from Few-Layer Graphene [J].
Barreiro, Amelia ;
van der Zant, Herre S. J. ;
Vandersypen, Lieven M. K. .
NANO LETTERS, 2012, 12 (12) :6096-6100
[5]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[6]   Localized charge carriers in graphene nanodevices [J].
Bischoff, D. ;
Varlet, A. ;
Simonet, P. ;
Eich, M. ;
Overweg, H. C. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS REVIEWS, 2015, 2 (03)
[7]   Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate [J].
Bischoff, D. ;
Libisch, F. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2014, 90 (11)
[8]   Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes [J].
Burzuri, Enrique ;
Island, Joshua O. ;
Diaz-Torres, Raul ;
Fursina, Alexandra ;
Gonzalez-Campo, Arantzazu ;
Roubeau, Olivier ;
Teat, Simon J. ;
Aliaga-Alcalde, Nuria ;
Ruiz, Eliseo ;
van der Zant, Herre S. J. .
ACS NANO, 2016, 10 (02) :2521-2527
[9]   Graphene Spintronic Devices with Molecular Nanomagnets [J].
Candini, Andrea ;
Klyatskaya, Svetlana ;
Ruben, Mario ;
Wernsdorfer, Wolfgang ;
Affronte, Marco .
NANO LETTERS, 2011, 11 (07) :2634-2639
[10]   Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW B, 2006, 74 (04)