Chromatic Thresholds in Sparse Random Graphs

被引:1
|
作者
Allen, Peter [1 ]
Bottcher, Julia [1 ]
Griffiths, Simon [2 ]
Kohayakawa, Yoshiharu [3 ]
Morris, Robert [4 ]
机构
[1] London Sch Econ, Dept Math, London WC2A 2AE, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
[4] IMPA, Jardim Bot, Estr Dona Castorina 110, Rio De Janeiro, RJ, Brazil
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
random graphs; chromatic threshold; minimum degree; SUBGRAPHS; NUMBER;
D O I
10.1002/rsa.20709
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The chromatic threshold delta(chi) (H, p) of a graph H with respect to the random graph G(n, p) is the infimum over d > 0 such that the following holds with high probability: the family of H-free graphs G subset of G(n, p) with minimum degree delta(G) >= dpn has bounded chromatic number. The study of d. (H) := delta(chi) (H, 1) was initiated in 1973 by Erdos and Simonovits. Recently delta(chi) (H) was determined for all graphs H. It is known that delta(chi) (H, p) =delta(chi) (H) for all fixed p epsilon (0, 1), but that typically delta(chi) (H, p) epsilon not equal delta(chi) (H) if p = 0(1). Here we study the problem for sparse random graphs. We determine delta(chi) (H, p) for most functions p = p(n) when H. {K3, C5}, and also for all graphs H with x(H) is not an element of {3, 4}. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:215 / 236
页数:22
相关论文
共 50 条
  • [1] Chromatic Thresholds in Dense Random Graphs
    Allen, Peter
    Bottcher, Julia
    Griffiths, Simon
    Kohayakawa, Yoshiharu
    Morris, Robert
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) : 185 - 214
  • [2] ON THE GAME CHROMATIC NUMBER OF SPARSE RANDOM GRAPHS
    Frieze, Alan
    Haber, Simcha
    Lavrov, Mikhail
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 768 - 790
  • [3] The chromatic thresholds of graphs
    Allen, Peter
    Boettcher, Julia
    Griffiths, Simon
    Kohayakawa, Yoshiharu
    Morris, Robert
    ADVANCES IN MATHEMATICS, 2013, 235 : 261 - 295
  • [4] On the Chromatic Number of Non-Sparse Random Intersection Graphs
    Nikoletseas, Sotiris E.
    Raptopoulos, Christoforos L.
    Spirakis, Paul G.
    THEORY OF COMPUTING SYSTEMS, 2017, 60 (01) : 112 - 127
  • [5] Testing Thresholds for High-Dimensional Sparse Random Geometric Graphs
    Liu, Siqi
    Mohanty, Sidhanth
    Schramm, Tselil
    Yang, Elizabeth
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 672 - 677
  • [6] The strong chromatic index of sparse graphs
    Debski, Michal
    Grytczuk, Jaroslaw
    Sleszynska-Nowak, Malgorzata
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 326 - 330
  • [7] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [8] Chromatic polynomials of random graphs
    Van Bussel, Frank
    Ehrlich, Christoph
    Fliegner, Denny
    Stolzenberg, Sebastian
    Timme, Marc
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (17)
  • [9] On the Strong Chromatic Index of Sparse Graphs
    DeOrsey, Philip
    Ferrara, Michael
    Graber, Nathan
    Hartke, Stephen G.
    Nelsen, Luke L.
    Sullivan, Eric
    Jahanbekam, Sogol
    Lidicky, Bernard
    Stolee, Derrick
    White, Jennifer
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [10] Injective chromatic index of sparse graphs
    Bu, Yuehua
    Wang, Peng
    Zhu, Hongguo
    Zhu, Junlei
    DISCRETE APPLIED MATHEMATICS, 2024, 345 : 9 - 16