An attempt was made to study selenium ( Se) and mercury ( Hg) interactions in plants, specifically soybean ( Glycine max), by inductively coupled plasma mass spectrometric detection. Greenhouse- cultivated plants were subjected to treatment with different regimens of Se and Hg and analyzed for their metabolized species in roots, stems, leaves, pods and beans. Most of the water- soluble Hg was found to be localized in the roots in association with Se in a high molecular weight entity, as identified by size exclusion chromatography. This entity was also extracted in protein specific isolate, but it resisted enzymatic breakdown. Complete breakdown of this high molecular weight species was accomplished by acid hydrolysis. Optimization of the conditions for acid hydrolysis is discussed. Hg and Se species found in root extract were studied by ion- pairing chromatography. In a sub- study, the Se distribution pattern was found to be unaffected by the presence of Hg, but the amount of Se assimilated was found to be higher in plants coexposed to Hg. An attempt was made to study selenium (Se) and mercury (Hg) interactions in plants, specifically soybean (Glycine max), by inductively coupled plasma mass spectrometric detection. Greenhouse-cultivated plants were subjected to treatment with different regimens of Se and Hg and analyzed for their metabolized species in roots, stems, leaves, pods and beans. Most of the water-soluble Hg was found to be localized in the roots in association with Se in a high molecular weight entity, as identified by size exclusion chromatography. This entity was also extracted in protein specific isolate, but it resisted enzymatic breakdown. Complete breakdown of this high molecular weight species was accomplished by acid hydrolysis. Optimization of the conditions for acid hydrolysis is discussed. Hg and Se species found in root extract were studied by ion-pairing chromatography. In a sub-study, the Se distribution pattern was found to be unaffected by the presence of Hg, but the amount of Se assimilated was found to be higher in plants coexposed to Hg.