MULTI-VIEW BISTATIC SYNTHETIC APERTURE RADAR TARGET RECOGNITION BASED ON MULTI-INPUT DEEP CONVOLUTIONAL NEURAL NETWORK

被引:0
作者
Pei, Jifang [1 ]
Huo, Weibo [1 ]
Zhang, Qianghui [1 ]
Huang, Yulin [1 ]
Miao, Yuxuan [1 ]
Zhang, Yin [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Elect Engn, Chengdu 611731, Sichuan, Peoples R China
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
基金
中国国家自然科学基金;
关键词
Bistatic synthetic aperture radar; multi-view; automatic target recognition; deep convolutional neural network;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bistatic synthetic aperture radar (SAR) can provide additional observables and scattering information of the target from multiple views. In this paper, a new bistatic SAR automatic target recognition (ATR) method based on multi-input deep convolutional neural network is proposed. The geometry of the multi-view bistatic SAR ATR is modeled, and an electromagnetic simulation approach is utilized as an alternative to generate enough bistatic SAR images for network training. Then a deep convolutional neural network with multiple inputs is designed, and the features of the multi-view bistatic SAR images will be effectively learned by the proposed network. Therefore, the proposed method can achieve a superior recognition performance. Experimental results have shown the superiority of the proposed method based on the electromagnetic simulation bistatic SAR data.
引用
收藏
页码:2314 / 2317
页数:4
相关论文
共 5 条
[1]   Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review [J].
El-Darymli, Khalid ;
Gill, Eric W. ;
McGuire, Peter ;
Power, Desmond ;
Moloney, Cecilia .
IEEE ACCESS, 2016, 4 :6014-6058
[2]  
Krieger Gerhard, 2004, IEE P-RADAR SON NAV, V153, P184
[3]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[4]   Bistatic SAR ATR [J].
Mishra, A. K. ;
Mulgrew, B. .
IET RADAR SONAR AND NAVIGATION, 2007, 1 (06) :459-469
[5]  
Stratton J. A., 2007, ELECTROMAGNETIC THEO, V33