A Chebyshev type inequality for fuzzy integrals

被引:104
作者
Flores-Franulic, A. [1 ]
Roman-Flores, H. [1 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
fuzzy measure; sugeno integral; monotone functions;
D O I
10.1016/j.amc.2007.02.143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a Chebyshev type inequality for fuzzy integrals. More precisely, we show that: [GRAPHICS] where mu is the Lebesgue measure on R and f, g : [0, 1] -> [0, infinity) are two continuous and strictly monotone functions, both increasing or both decreasing. Also, some examples and applications are presented. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1178 / 1184
页数:7
相关论文
共 11 条
[1]  
Gauchman H., 2003, J INEQUAL PURE APPL, V4
[2]   THE FUZZY INTEGRAL [J].
RALESCU, D ;
ADAMS, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (02) :562-570
[3]   H-continuity of fuzzy measures and set defuzzification [J].
Román-Flores, H ;
Chalco-Cano, Y .
FUZZY SETS AND SYSTEMS, 2006, 157 (02) :230-242
[4]   Sugeno integral and geometric inequalities [J].
Roman-Flores, Heriberto ;
Chalco-Cano, Yurilev .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (01) :1-11
[5]   On the level-continuity of fuzzy integrals [J].
RomanFlores, H ;
FloresFranulic, A ;
Bassanezi, RC ;
RojasMedar, M .
FUZZY SETS AND SYSTEMS, 1996, 80 (03) :339-344
[6]  
ROMANFLORES H, IN PRESS INFORM SCI
[7]  
ROMANFLORES H, IN PRESS APPL MATH C
[8]  
Sugeno M, 1974, Doctoral Thesis
[9]   Relationship between stochastic inequalities and some classical mathematical inequalities [J].
Tong, YL .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1997, 1 (01) :85-98
[10]   Chebyshev's Algebraic Inequality and comparative statics under uncertainty [J].
Wagener, Andreas .
MATHEMATICAL SOCIAL SCIENCES, 2006, 52 (02) :217-221