Global multipartite entanglement dynamics in Grover's search algorithm

被引:15
作者
Pan, Minghua [1 ,2 ,3 ]
Qiu, Daowen [1 ]
Zheng, Shenggen [1 ]
机构
[1] Sun Yat Sen Univ, Inst Comp Sci Theory, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Wuzhou Univ, Sch Informat & Elect Engn, Wuzhou 543002, Peoples R China
关键词
Entanglement dynamics; Quantum search algorithm; Geometricmeasure of entanglement; Scale invariance;
D O I
10.1007/s11128-017-1661-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement is considered to be one of the primary reasons for why quantum algorithms are more efficient than their classical counterparts for certain computational tasks. The global multipartite entanglement of the multiqubit states in Grover's search algorithm can be quantified using the geometric measure of entanglement (GME). Rossi et al. (Phys Rev A 87: 022331, 2013) found that the entanglement dynamics is scale invariant for large n. Namely, the GME does not depend on the number n of qubits; rather, it only depends on the ratio of iteration k to the total iteration. In this paper, we discuss the optimization of the GME for large n. We prove that " the GME is scale invariant" does not always hold. We show that there is generally a turning point that can be computed in terms of the number of marked states and their Hamming weights during the curve of the GME. The GME is scale invariant prior to the turning point. However, the GME is not scale invariant after the turning point since it also depends on n and the marked states.
引用
收藏
页数:18
相关论文
共 35 条
  • [1] Global versus local quantum correlations in the Grover search algorithm
    Batle, J.
    Ooi, C. H. Raymond
    Farouk, Ahmed
    Alkhambashi, M. S.
    Abdalla, S.
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 833 - 849
  • [2] Entanglement monotone derived from Grover's algorithm
    Biham, O
    Nielsen, MA
    Osborne, TJ
    [J]. PHYSICAL REVIEW A, 2002, 65 (06) : 623121 - 623127
  • [3] Hierarchies of geometric entanglement
    Blasone, M.
    Dell'Anno, F.
    De Siena, S.
    Illuminati, F.
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [4] Multipartite entanglement in quantum algorithms
    Bruss, D.
    Macchiavello, C.
    [J]. PHYSICAL REVIEW A, 2011, 83 (05)
  • [5] Characterizing entanglement
    Bruss, D
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4237 - 4251
  • [6] Connecting the generalized robustness and the geometric measure of entanglement
    Cavalcanti, D
    [J]. PHYSICAL REVIEW A, 2006, 73 (04):
  • [7] Chakraborty S., 2013, ARXIV13054454
  • [8] Success rate and entanglement measure in Grover's search algorithm for certain kinds of four qubit states
    Chamoli, A
    Bhandari, CM
    [J]. PHYSICS LETTERS A, 2005, 346 (1-3) : 17 - 26
  • [9] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [10] Correlations in the Grover search
    Cui, Jian
    Fan, Heng
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (04)