Q- and A-Learning Methods for Estimating Optimal Dynamic Treatment Regimes

被引:144
作者
Schulte, Phillip J. [1 ]
Tsiatis, Anastasios A. [2 ]
Laber, Eric B. [2 ]
Davidian, Marie [2 ]
机构
[1] Duke Clin Res Inst, Durham, NC 27701 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
Advantage learning; bias-variance trade-off; model misspecification; personalized medicine; potential outcomes; sequential decision-making; ADAPTIVE TREATMENT STRATEGIES; NESTED MEAN MODELS; CLINICAL-TRIALS; DESIGN; INFERENCE; RANDOMIZATION; DEPRESSION; REGRESSION; DECISIONS; SUBJECT;
D O I
10.1214/13-STS450
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In clinical practice, physicians make a series of treatment decisions over the course of a patient's disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information. Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study.
引用
收藏
页码:640 / 661
页数:22
相关论文
共 44 条
[21]   A NEW APPROACH TO CAUSAL INFERENCE IN MORTALITY STUDIES WITH A SUSTAINED EXPOSURE PERIOD - APPLICATION TO CONTROL OF THE HEALTHY WORKER SURVIVOR EFFECT [J].
ROBINS, J .
MATHEMATICAL MODELLING, 1986, 7 (9-12) :1393-1512
[22]   Estimation and extrapolation of optimal treatment and testing strategies [J].
Robins, James ;
Orellana, Liliana ;
Rotnitzky, Andrea .
STATISTICS IN MEDICINE, 2008, 27 (23) :4678-4721
[23]  
Robins JM, 2004, LECT NOTES STAT, V179, P189
[24]  
ROBINS JM, 1994, COMMUN STAT THEORY, V23, P2379, DOI 10.1080/03610929408831393
[25]   Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models [J].
Rosenblum, Michael ;
van der Laan, Mark J. .
BIOMETRICS, 2009, 65 (03) :937-945
[26]   Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach [J].
Rosthoj, Susanne ;
Fullwood, Catherine ;
Henderson, Robin ;
Stewart, Syd .
STATISTICS IN MEDICINE, 2006, 25 (24) :4197-4215
[27]   BAYESIAN-INFERENCE FOR CAUSAL EFFECTS - ROLE OF RANDOMIZATION [J].
RUBIN, DB .
ANNALS OF STATISTICS, 1978, 6 (01) :34-58
[28]   The 16-item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression [J].
Rush, AJ ;
Trivedi, MH ;
Ibrahim, HM ;
Carmody, TJ ;
Arnow, B ;
Klein, DN ;
Markowitz, JC ;
Ninan, PT ;
Kornstein, S ;
Manber, R ;
Thase, ME ;
Kocsis, JH ;
Keller, MB .
BIOLOGICAL PSYCHIATRY, 2003, 54 (05) :573-583
[29]   Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design [J].
Rush, AJ ;
Fava, M ;
Wisniewski, SR ;
Lavori, PW ;
Trivedi, MH ;
Sackeim, HA ;
Thase, ME ;
Nierenberg, AA ;
Quitkin, FM ;
Kashner, TM ;
Kupfer, DJ ;
Rosenbaum, JF ;
Alpert, J ;
Stewart, JW ;
McGrath, PJ ;
Biggs, MM ;
Shores-Wilson, K ;
Lebowitz, BD ;
Ritz, L ;
Niederehe, G .
CONTROLLED CLINICAL TRIALS, 2004, 25 (01) :119-142
[30]  
SCHULTE P. J., 2014, Q A LEARNING METHO S, DOI [10.1214/13-STS450SUPP, DOI 10.1214/13-STS450SUPP]