On the boundary behavior of Kahler-Einstein metrics on log canonical pairs

被引:5
|
作者
Guenancia, Henri [1 ]
Wu, Damin [2 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Univ Connecticut, Dept Math, 196 Auditorium Rd, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; RIEMANNIAN MANIFOLDS; RICCI CURVATURE; SINGULARITIES;
D O I
10.1007/s00208-015-1306-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary behavior of the negatively curved Kahler-Einstein metric attached to a log canonical pair (X, D) such that K-X + D is ample. In the case where X is smooth and D has simple normal crossings support (but possibly negative coefficients), we provide a very precise estimate on the potential of the KE metric near the boundary D. In the more general singular case (D being assumed effective though), we show that the KE metric has mixed cone and cusp singularities near D on the snc locus of the pair. As a corollary, we derive the behavior in codimension one of the KE metric of a stable variety.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 50 条
  • [11] Conical Kahler-Einstein Metrics Revisited
    Li, Chi
    Sun, Song
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) : 927 - 973
  • [12] Kahler-Einstein metrics on Fano manifolds
    Tian, Gang
    JAPANESE JOURNAL OF MATHEMATICS, 2015, 10 (01): : 1 - 41
  • [13] A REMARK ON CONICAL KAHLER-EINSTEIN METRICS
    Szekelyhidi, Gabor
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) : 581 - 590
  • [14] Kahler-Einstein metrics with edge singularities
    Jeffres, Thalia
    Mazzeo, Rafe
    Rubinstein, Yanir A.
    ANNALS OF MATHEMATICS, 2016, 183 (01) : 95 - 176
  • [15] Connecting toric manifolds by conical Kahler-Einstein metrics
    Datar, Ved
    Guo, Bin
    Song, Jian
    Wang, Xiaowei
    ADVANCES IN MATHEMATICS, 2018, 323 : 38 - 83
  • [16] Existence of weak conical Kahler-Einstein metrics along smooth hypersurfaces
    Yao, Chengjian
    MATHEMATISCHE ANNALEN, 2015, 362 (3-4) : 1287 - 1304
  • [17] K-Stability and Kahler-Einstein Metrics
    Tian, Gang M.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (07) : 1085 - 1156
  • [18] Smooth approximation of twisted Kahler-Einstein metrics
    Jin, Lize
    Wang, Feng
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [19] Kahler-Einstein metrics: From cones to cusps
    Guenancia, Henri
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 1 - 27
  • [20] Generalized Kahler-Einstein Metrics and Energy Functionals
    Zhang, Xi
    Zhang, Xiangwen
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (06): : 1413 - 1435