On the boundary behavior of Kahler-Einstein metrics on log canonical pairs

被引:5
|
作者
Guenancia, Henri [1 ]
Wu, Damin [2 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Univ Connecticut, Dept Math, 196 Auditorium Rd, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; RIEMANNIAN MANIFOLDS; RICCI CURVATURE; SINGULARITIES;
D O I
10.1007/s00208-015-1306-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary behavior of the negatively curved Kahler-Einstein metric attached to a log canonical pair (X, D) such that K-X + D is ample. In the case where X is smooth and D has simple normal crossings support (but possibly negative coefficients), we provide a very precise estimate on the potential of the KE metric near the boundary D. In the more general singular case (D being assumed effective though), we show that the KE metric has mixed cone and cusp singularities near D on the snc locus of the pair. As a corollary, we derive the behavior in codimension one of the KE metric of a stable variety.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 50 条
  • [1] Kahler-Einstein metrics, canonical random point processes and birational geometry
    Berman, Robert J.
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 29 - 73
  • [2] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [3] METRICS OF KAHLER-EINSTEIN ON THE FANO VARIETIES
    Eyssidieux, Philippe
    ASTERISQUE, 2016, (380) : 207 - 229
  • [4] Families of conic Kahler-Einstein metrics
    Guenancia, Henri
    MATHEMATISCHE ANNALEN, 2020, 376 (1-2) : 1 - 37
  • [5] Bubbling of Kahler-Einstein metrics
    Sun, Song
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1317 - 1348
  • [6] On the existence of conic Kahler-Einstein metrics
    Tian, Gang
    Wang, Feng
    ADVANCES IN MATHEMATICS, 2020, 375
  • [7] Twisted Kahler-Einstein metrics
    Ross, Julius
    Szekelyhidi, Gabor
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1025 - 1044
  • [8] Geometry of Twisted Kahler-Einstein Metrics and Collapsing
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (03) : 1401 - 1438
  • [9] Families of singular Kahler-Einstein metrics
    Di Nezza, Eleonora
    Guedj, Vincent
    Guenancia, Henri
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (07) : 1249 - 2762
  • [10] KAHLER-EINSTEIN METRICS ON GROUP COMPACTIFICATIONS
    Delcroix, Thibaut
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (01) : 78 - 129