共 50 条
A metal-organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors
被引:49
|作者:
Li, Hongxia
[1
,2
,3
]
Chen, Jiangtao
[1
]
Zhang, Li
[1
]
Wang, Kunjie
[3
]
Zhang, Xu
[1
]
Yang, Bingjun
[1
,2
]
Liu, Lingyang
[1
,2
]
Liu, Weisheng
[4
]
Yan, Xingbin
[1
,2
,5
]
机构:
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, Lab Clean Energy Chem & Mat, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Lanzhou Univ Technol, Sch Petrochem Engn, Lanzhou 730050, Peoples R China
[4] Lanzhou Univ, Coll Chem & Chem Engn, Lanzhou 730000, Peoples R China
[5] Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116000, Peoples R China
关键词:
ENERGY-STORAGE;
SODIUM STORAGE;
K-ION;
CARBON;
INTERCALATION;
NITROGEN;
ANODE;
PHOSPHORUS;
D O I:
10.1039/d0ta04912c
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
For the emerging potassium-ion energy storage technology, the major challenge is seeking suitable electrode materials with a robust structure and fast kinetics for the reversible insertion/desertion of potassium ions. Here, a pseudocapacitive core-shell heterostructure of titanium oxide/carbon confined into N, P, and S co-doped carbon (TiO2/C@NPSC) is obtained by pyrolyzing a metal-organic framework (MOF) precursor of MIL-125 (Ti) modified by poly(cyclotriphosphazene-co-4,4 '-sulfonyldiphenol) polymer. The distinctive structure of TiO2/C@NPSC can effectively buffer the volume variation of TiO(2)nano-grains during the charge/discharge process, increase the electron/charge transfer, provide abundant active sites, and boost the pseudocapacitive-dominated K+-storage. Consequently, the TiO2/C@NPSC anode displays superior cyclability and fast kinetics behavior. Upon integrating it with a high capacitance activated carbon cathode derived from another MOF precursor, the as-built potassium-ion hybrid capacitor achieves a high-energy density of 114 W h kg(-1)and a power output of 21 kW kg(-1). Moreover, in a wide working potential window of 0-4.2 V, the device also maintains over 91.6% of its initial capacity after 10 000 cycles, showing a superior cycle stability. Our results are conducive to understanding the importance of anode-engineering for designing advanced PIHCs.
引用
收藏
页码:16302 / 16311
页数:10
相关论文