Flexible Piezoelectric Energy-Harvesting Exploiting Biocompatible AIN Thin Films Grown onto Spin-Coated Polyimide Layers

被引:61
作者
Algieri, Luciana [1 ,2 ]
Todaro, Maria Teresa [1 ,3 ]
Guido, Francesco [1 ]
Mastronardi, Vincenzo [1 ]
Desmaele, Denis [1 ]
Qualtieri, Antonio [1 ]
Giannini, Cinzia [4 ]
Sibillano, Teresa [4 ]
De Vittorio, Massimo [1 ,2 ]
机构
[1] IIT, Ctr Biomol Nanotechnol, Via Barsanti, I-73010 Arnesano, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
[3] Ist Nanotecnol Consiglio Nazl Ric NANOTE, Campus Ecotekne,Via Monteroni, I-73100 Lecce, Italy
[4] CNR, Ist Cristallog, V Amendola 122-O, I-70126 Bari, Italy
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 10期
关键词
flexible electronics; piezoelectric energy harvesting; aluminum nitride; thin films; piezoresponse force microscopy (PFM); NANOGENERATOR; ORIENTATION; MEMS;
D O I
10.1021/acsaem.8b00820
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The increasing demand of piezoelectric energy harvesters for wearable and implantable applications requires biocompatible materials and careful structural device design, paying special attention to the conformability characteristics, properly tailored to scavenge continuously electrical energy even from the tiniest body movements. This paper provides a comprehensive study on a flexible and biocompatible aluminum nitride (AIN) energy harvester based on a new alternative fabrication approach, exploiting a thin polyimide (PI) substrate, prepared by spin coating of precursors solution. This strategy allows manufacturing substrates with adjustable thickness to meet conformability requirements. The device is based on a piezoelectric A1N thin film, sputtered directly onto the soft PI substrate, without poling/annealing processes and patterned by simple and low cost microfabrication technologies. AIN active layer, grown on soft substrate, exhibits good morphological and structural properties with roughness root mean squared (R-rms) of 6.35 nm, columnar texture and (002) c-axis orientation. Additionally, piezoelectric characterization has been performed and the extracted piezoelectric coefficient value of AIN thin film resulted to be 4.93 +/- 0.09 pm/V. The fabricated flexible A1N energy harvester generates an output peak-to-peak voltage of similar to 1.4 V and a peak-to-peak current up to 1.6 itA, under periodical deformation, corresponding to a current density of 2.1 mu A/cm(2), and providing a maximum generated power of 1.57 mu W under optimal resistive load. Furthermore, the AN energy harvester exhibits high elasticity and resistance to mechanical fatigue. High quality AIN piezoelectric layers on elastic substrates with tunable thicknesses pave the way for the development of a straightforward technological platform for wearable/implantable energy harvesters and biomechanical sensors.
引用
收藏
页码:5203 / +
页数:15
相关论文
共 32 条
[1]   Measurement techniques for piezoelectric nanogenerators [J].
Briscoe, Joe ;
Jalali, Nimra ;
Woolliams, Peter ;
Stewart, Mark ;
Weaver, Paul M. ;
Cainb, Markys ;
Dunn, Steve .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) :3035-3045
[2]   Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm [J].
Dagdeviren, Canan ;
Yang, Byung Duk ;
Su, Yewang ;
Tran, Phat L. ;
Joe, Pauline ;
Anderson, Eric ;
Xia, Jing ;
Doraiswamy, Vijay ;
Dehdashti, Behrooz ;
Feng, Xue ;
Lu, Bingwei ;
Poston, Robert ;
Khalpey, Zain ;
Ghaffari, Roozbeh ;
Huang, Yonggang ;
Slepian, Marvin J. ;
Rogers, John A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (05) :1927-1932
[3]   Organic thin-film transistors: A review of recent advances [J].
Dimitrakopoulos, CD ;
Mascaro, DJ .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :11-27
[4]   Preparation on transparent flexible piezoelectric energy harvester based on PZT films by laser lift-off process [J].
Do, Young Ho ;
Jung, Woo Suk ;
Kang, Min Gyu ;
Kang, Chong Yun ;
Yoon, Seok Jin .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 200 :51-55
[5]   AlN piezoelectric thin films for energy harvesting and acoustic devices [J].
Fei, Chunlong ;
Liu, Xiangli ;
Zhu, Benpeng ;
Li, Di ;
Yang, Xiaofei ;
Yang, Yintang ;
Zhou, Qifa .
NANO ENERGY, 2018, 51 :146-161
[6]   Thickness ratio and d33 effects on flexible piezoelectric unimorph energy conversion [J].
Ha, Taewoo ;
Zhang, John X. J. ;
Lu, Nanshu .
SMART MATERIALS AND STRUCTURES, 2016, 25 (03)
[7]   Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester [J].
Hwang, Geon-Tae ;
Annapureddy, Venkateswarlu ;
Han, Jae Hyun ;
Joe, Daniel J. ;
Baek, Changyeon ;
Park, Dae Yong ;
Kim, Dong Hyun ;
Park, Jung Hwan ;
Jeong, Chang Kyu ;
Park, Kwi-Il ;
Choi, Jong-Jin ;
Kim, Do Kyung ;
Ryu, Jungho ;
Lee, Keon Jae .
ADVANCED ENERGY MATERIALS, 2016, 6 (13)
[8]   Self-powered deep brain stimulation via a flexible PIMNT energy harvester [J].
Hwang, Geon-Tae ;
Kim, Youngsoo ;
Lee, Jeong-Ho ;
Oh, SeKwon ;
Jeong, Chang Kyu ;
Park, Dae Yong ;
Ryu, Jungho ;
Kwon, HyukSang ;
Lee, Sang-Goo ;
Joung, Boyoung ;
Kim, Daesoo ;
Lee, Keon Jae .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (09) :2677-2684
[9]   Flexible Piezoelectric Thin-Film Energy Harvesters and Nanosensors for Biomedical Applications [J].
Hwang, Geon-Tae ;
Byun, Myunghwan ;
Jeong, Chang Kyu ;
Lee, Keon Jae .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (05) :646-658
[10]   Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester [J].
Hwang, Geon-Tae ;
Park, Hyewon ;
Lee, Jeong-Ho ;
Oh, SeKwon ;
Park, Kwi-Il ;
Byun, Myunghwan ;
Park, Hyelim ;
Ahn, Gun ;
Jeong, Chang Kyu ;
No, Kwangsoo ;
Kwon, HyukSang ;
Lee, Sang-Goo ;
Joung, Boyoung ;
Lee, Keon Jae .
ADVANCED MATERIALS, 2014, 26 (28) :4880-+