Flexible Piezoelectric Energy-Harvesting Exploiting Biocompatible AIN Thin Films Grown onto Spin-Coated Polyimide Layers

被引:59
|
作者
Algieri, Luciana [1 ,2 ]
Todaro, Maria Teresa [1 ,3 ]
Guido, Francesco [1 ]
Mastronardi, Vincenzo [1 ]
Desmaele, Denis [1 ]
Qualtieri, Antonio [1 ]
Giannini, Cinzia [4 ]
Sibillano, Teresa [4 ]
De Vittorio, Massimo [1 ,2 ]
机构
[1] IIT, Ctr Biomol Nanotechnol, Via Barsanti, I-73010 Arnesano, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
[3] Ist Nanotecnol Consiglio Nazl Ric NANOTE, Campus Ecotekne,Via Monteroni, I-73100 Lecce, Italy
[4] CNR, Ist Cristallog, V Amendola 122-O, I-70126 Bari, Italy
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 10期
关键词
flexible electronics; piezoelectric energy harvesting; aluminum nitride; thin films; piezoresponse force microscopy (PFM); NANOGENERATOR; ORIENTATION; MEMS;
D O I
10.1021/acsaem.8b00820
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The increasing demand of piezoelectric energy harvesters for wearable and implantable applications requires biocompatible materials and careful structural device design, paying special attention to the conformability characteristics, properly tailored to scavenge continuously electrical energy even from the tiniest body movements. This paper provides a comprehensive study on a flexible and biocompatible aluminum nitride (AIN) energy harvester based on a new alternative fabrication approach, exploiting a thin polyimide (PI) substrate, prepared by spin coating of precursors solution. This strategy allows manufacturing substrates with adjustable thickness to meet conformability requirements. The device is based on a piezoelectric A1N thin film, sputtered directly onto the soft PI substrate, without poling/annealing processes and patterned by simple and low cost microfabrication technologies. AIN active layer, grown on soft substrate, exhibits good morphological and structural properties with roughness root mean squared (R-rms) of 6.35 nm, columnar texture and (002) c-axis orientation. Additionally, piezoelectric characterization has been performed and the extracted piezoelectric coefficient value of AIN thin film resulted to be 4.93 +/- 0.09 pm/V. The fabricated flexible A1N energy harvester generates an output peak-to-peak voltage of similar to 1.4 V and a peak-to-peak current up to 1.6 itA, under periodical deformation, corresponding to a current density of 2.1 mu A/cm(2), and providing a maximum generated power of 1.57 mu W under optimal resistive load. Furthermore, the AN energy harvester exhibits high elasticity and resistance to mechanical fatigue. High quality AIN piezoelectric layers on elastic substrates with tunable thicknesses pave the way for the development of a straightforward technological platform for wearable/implantable energy harvesters and biomechanical sensors.
引用
收藏
页码:5203 / +
页数:15
相关论文
共 8 条
  • [1] Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films
    Todaro, Maria Teresa
    Guido, Francesco
    Algieri, Luciana
    Mastronardi, Vincenzo M.
    Desmaele, Denis
    Epifani, Gianmichele
    De Vittorio, Massimo
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (02) : 220 - 230
  • [2] All-Inorganic Flexible (K, Na)NbO3-Based Lead-Free Piezoelectric Thin Films Spin-Coated on Metallic Foils
    Cheng, Yue-Yu-Shan
    Liu, Lisha
    Huang, Yu
    Shu, Liang
    Liu, Yi-Xuan
    Wei, Liyu
    Li, Jing-Feng
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 39633 - 39640
  • [3] Microstructure and piezoelectric properties of AlN thin films grown on stainless steel for the application of vibration energy harvesting
    Zhang, Jin Y.
    Cao, Ziping
    Wang, Qi
    Kuwano, Hiroki
    MICRO & NANO LETTERS, 2012, 7 (12): : 1170 - 1172
  • [4] Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films
    Won, Sung Sik
    Seo, Hosung
    Kawahara, Masami
    Glinsek, Sebastjan
    Lee, Jinkee
    Kim, Yunseok
    Jeong, Chang Kyu
    Kingon, Angus I.
    Kim, Seung-Hyun
    NANO ENERGY, 2019, 55 : 182 - 192
  • [5] Magnetic energy dissipative factors of spin-coated Y3Fe5O12 thin films
    Sharma, R.
    Ojha, P. K.
    Mishra, S. K.
    THIN SOLID FILMS, 2023, 764
  • [6] Electric-Field-Dependent Surface Potentials and Vibrational Energy-Harvesting Characteristics of Bi(Na0.5Ti0.5)O3-Based Pb-Free Piezoelectric Thin Films
    Cho, Ahra
    Kim, Da Bin
    Cho, Yong Soo
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (14) : 13244 - 13250
  • [7] Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate
    Kim, Byunggu
    Leem, Jae-Young
    KOREAN JOURNAL OF METALS AND MATERIALS, 2017, 55 (01): : 67 - 71
  • [8] The deposition of thin films of cadmium zinc sulfide Cd1−xZnxS at 250 °C from spin-coated xanthato complexes: a potential route to window layers for photovoltaic cells
    Ali A. K. Bakly
    Ben F. Spencer
    Paul O’Brien
    Journal of Materials Science, 2018, 53 : 4360 - 4370