RATE OF CONVERGENCE OF EMPIRICAL MEASURES FOR EXCHANGEABLE SEQUENCES

被引:0
作者
Berti, Patrizia [1 ]
Telli, Lucapra [2 ]
Rigo, Pietro [3 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat Pura & Applicata G Vitali, Via Campi 213-B, I-41100 Modena, Italy
[2] Accademia Navale, Viale Italia 72, I-57100 Livorno, Italy
[3] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
关键词
empirical measure; exchangeability; predictive measure; random probability measure; rate of convergence;
D O I
10.1515/ms-2017-0070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a finite set, (X-n) an exchangeable sequence of S-valued random variables, and mu(n) = (1/n) Sigma(n)(i=1) delta X-i the empirical measure. Then, mu(n) (B) ->(a.s.) mu (B) for all B subset of S and some (essentially unique) random probability measure mu. Denote by L(Z) the probability distribution of any random variable Z. Under some assumptions on L(mu), it is shown that (a)(n) <= rho[L(mu(n)), L(mu)] <=(b)(n) and rho[L(mu(n)), L(a(n))] <= (c)(nu) where rho is the bounded Lipschitz metric and a(n)(center dot) = P(Xn+1 is an element of center dot vertical bar X-1,..., X-n) is the predictive measure. The constants a, b,c > 0 and u is an element of (1/2, 1] depend on L(mu) and card(S) only. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1557 / 1570
页数:14
相关论文
共 10 条
[1]  
[Anonymous], 2000, Sankhya, Ser. A
[2]   Limit theorems for a class of identically distributed random variables [J].
Berti, P ;
Pratelli, L ;
Rigo, P .
ANNALS OF PROBABILITY, 2004, 32 (3A) :2029-2052
[3]  
BERTI P, 2016, ASYMPTOTIC PREDICTIV
[4]   EXCHANGEABLE SEQUENCES DRIVEN BY AN ABSOLUTELY CONTINUOUS RANDOM MEASURE [J].
Berti, Patrizia ;
Pratelli, Luca ;
Rigo, Pietro .
ANNALS OF PROBABILITY, 2013, 41 (3B) :2090-2102
[5]   Limit theorems for empirical processes based on dependent data [J].
Berti, Patrizia ;
Pratelli, Luca ;
Rigo, Pietro .
ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 :1-18
[6]   Rate of convergence of predictive distributions for dependent data [J].
Berti, Patrizia ;
Crimaldi, Irene ;
Pratelli, Luca ;
Rigo, Pietro .
BERNOULLI, 2009, 15 (04) :1351-1367
[7]  
CIFARELLI D.M, 2016, ARXIV160201269V1
[8]  
Cifarelli DM, 1996, STAT SCI, V11, P253
[9]  
Goldstein L, 2013, J APPL PROBAB, V50, P1187
[10]  
MIJOULE G, 2016, ARXIV160106606V1