Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets

被引:259
作者
Hofmann, S. [1 ]
van Gessel, A. F. H. [1 ]
Verreycken, T. [1 ]
Bruggeman, P. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
DISCHARGES; SCATTERING;
D O I
10.1088/0963-0252/20/6/065010
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A set of diagnostic methods to obtain the plasma parameters including power dissipation, gas temperature and electron density is evaluated for an atmospheric pressure helium or argon radio frequency (RF) plasma needle for biomedical applications operated in open air. The power density of the plasma is more or less constant and equal to 1.3 x 10(9) W m(-3). Different methods are investigated and evaluated to obtain the gas temperature. In this paper the gas temperatures obtained by rotational spectra of OH(A-X) and N-2(+) (B-X) are compared with Rayleigh scattering measurements and measurements of the line broadening of hydrogen and helium emission lines. The obtained gas temperature ranges from 300 to 650 K, depending on the gas. The electron densities are estimated from the Stark broadening of the hydrogen a and beta lines which yield values between 10(19) and 10(20) m(-3). In the case of helium, this is an overestimate as is shown by a power balance from the measured power density in the plasma jet. The obtained plasma parameters enable us to explain the radial contraction of the argon plasma compared with the more diffuse helium plasma. The accuracy of all considered diagnostics is discussed in detail.
引用
收藏
页数:12
相关论文
共 49 条
[11]   THE ULTRAVIOLET BANDS OF OH - FUNDAMENTAL DATA [J].
DIEKE, GH ;
CROSSWHITE, HM .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1962, 2 (02) :97-&
[12]   On the use of non-hydrogenic spectral lines for low electron density and high pressure plasma diagnostics [J].
Djurovic, S. ;
Konjevic, N. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (03)
[13]   Low temperature atmospheric pressure plasma sources for microbial decontamination [J].
Ehlbeck, J. ;
Schnabel, U. ;
Polak, M. ;
Winter, J. ;
von Woedtke, Th ;
Brandenburg, R. ;
von dem Hagen, T. ;
Weltmann, K-D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (01)
[14]  
Ellis H. W., 1976, Atomic Data and Nuclear Data Tables, V17, P177, DOI 10.1016/0092-640X(76)90001-2
[15]   RF capillary jet - a tool for localized surface treatment [J].
Foest, R. ;
Kindel, E. ;
Lange, H. ;
Ohl, A. ;
Stieber, M. ;
Weltmann, K. -D. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2007, 47 (1-2) :119-128
[16]   Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy [J].
Förster, S ;
Mohr, C ;
Viöl, W .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4) :827-830
[17]  
Fridman A., 2008, PLASMA CHEM
[18]   Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics [J].
Gigosos, MA ;
González, MA ;
Cardeñoso, V .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2003, 58 (08) :1489-1504
[19]   INSITU SIMULTANEOUS RADIO-FREQUENCY DISCHARGE POWER MEASUREMENTS [J].
GODYAK, VA ;
PIEJAK, RB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (05) :3833-3837
[20]  
Gonzalez MA, 2010, COMMUNICATION