Towards Hilbert's tenth problem for rings of integers through Iwasawa theory and Heegner points

被引:11
作者
Garcia-Fritz, Natalia [1 ]
Pasten, Hector [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Dept Matemat, 4860 Av Vicuna Mackenna, Macul, RM, Chile
关键词
ELLIPTIC-CURVES; DIOPHANTINE SETS; DERIVATIVES; VARIETIES; VALUES;
D O I
10.1007/s00208-020-01991-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive proportion of primes p and q, we prove that Z is Diophantine in the ring of integers of Q( 3 v p, v -q). This provides a new and explicit infinite family of number fields K such that Hilbert's tenth problem for OK is unsolvable. Our methods use Iwasawa theory and congruences of Heegner points in order to obtain suitable rank stability properties for elliptic curves.
引用
收藏
页码:989 / 1013
页数:25
相关论文
共 39 条
[31]   IWASAWA L-FUNCTIONS OF VARIETIES OVER ALGEBRAIC NUMBER-FIELDS - A 1ST APPROACH [J].
SCHNEIDER, P .
INVENTIONES MATHEMATICAE, 1983, 71 (02) :251-293
[32]   DIOPHANTINE RELATIONSHIPS BETWEEN ALGEBRAIC NUMBER-FIELDS [J].
SHAPIRO, HN ;
SHLAPENTOKH, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1113-1122
[33]   EXTENSION OF HILBERTS 10TH PROBLEM TO SOME ALGEBRAIC NUMBER-FIELDS [J].
SHLAPENTOKH, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (07) :939-962
[34]   Elliptic curves retaining their rank in finite extensions and Hilbert's tenth problem for rings of algebraic numbers [J].
Shlapentokh, Alexandra .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) :3541-3555
[35]  
Silverman J. H., 1994, GRADUATE TEXTS MATH, V151, DOI [10.1007/978-1-4612-0851-8, DOI 10.1007/978-1-4612-0851-8]
[36]   RING-THEORETIC PROPERTIES OF CERTAIN HECKE ALGEBRAS [J].
TAYLOR, R ;
WILES, A .
ANNALS OF MATHEMATICS, 1995, 141 (03) :553-572
[37]  
The LMFDB collaboration, The L-functions and modular forms database
[38]  
Videla Vid89 C. R., 1989, Atas da Xa Escola de Algebra (Vitoria, ES), Colecao Atas 16 da Sociedade Brasileira de Matematica, P95
[39]   MODULAR ELLIPTIC-CURVES AND FERMATS LAST THEOREM [J].
WILES, A .
ANNALS OF MATHEMATICS, 1995, 141 (03) :443-551