Towards Hilbert's tenth problem for rings of integers through Iwasawa theory and Heegner points

被引:11
作者
Garcia-Fritz, Natalia [1 ]
Pasten, Hector [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Dept Matemat, 4860 Av Vicuna Mackenna, Macul, RM, Chile
关键词
ELLIPTIC-CURVES; DIOPHANTINE SETS; DERIVATIVES; VARIETIES; VALUES;
D O I
10.1007/s00208-020-01991-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive proportion of primes p and q, we prove that Z is Diophantine in the ring of integers of Q( 3 v p, v -q). This provides a new and explicit infinite family of number fields K such that Hilbert's tenth problem for OK is unsolvable. Our methods use Iwasawa theory and congruences of Heegner points in order to obtain suitable rank stability properties for elliptic curves.
引用
收藏
页码:989 / 1013
页数:25
相关论文
共 39 条
[1]  
Abbes A, 1996, COMPOS MATH, V103, P269
[2]  
Agashe A, 2006, PURE APPL MATH Q, V2, P617
[3]  
[Anonymous], 1952, Math. Z.
[4]  
BIRCH B, 1969, INVENT MATH, P35
[5]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[6]   EISENSTEIN SERIES ON THE METAPLECTIC GROUP AND NONVANISHING THEOREMS FOR AUTOMORPHIC L-FUNCTIONS AND THEIR DERIVATIVES [J].
BUMP, D ;
FRIEDBERG, S ;
HOFFSTEIN, J .
ANNALS OF MATHEMATICS, 1990, 131 (01) :53-127
[7]  
Cornelissen G., 2005, J THEOR NOMBR BORDX, V17, P727, DOI DOI 10.5802/JTNB.516
[8]   DECISION PROBLEM FOR EXPONENTIAL DIOPHANTINE EQUATIONS [J].
DAVIS, M ;
PUTNAM, H ;
ROBINSON, J .
ANNALS OF MATHEMATICS, 1961, 74 (03) :425-&
[9]  
DENEF J, 1980, T AM MATH SOC, V257, P227, DOI 10.2307/1998133
[10]  
DENEF J, 1978, J LOND MATH SOC, V18, P385