ωB-splines

被引:5
作者
Fang Mei'E [1 ,2 ,3 ]
Wang GuoZhao [1 ,2 ]
机构
[1] Zhejiang Univ, Inst Comp & Image Proc, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Comp, Hangzhou 310018, Peoples R China
来源
SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES | 2008年 / 51卷 / 08期
基金
中国国家自然科学基金;
关键词
omega B-splines; frequencies; B-splines; trigonometric polynomial B-splines; hyperbolic polynomial B-splines;
D O I
10.1007/s11432-008-0076-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new kind of spline with variable frequencies, called omega B-spline, is presented. It not only unifies B-splines, trigonometric and hyperbolic polynomial B-splines, but also produces more new types of splines. omega B-spline bases are defined in the space spanned by {cos omega t, sin omega t, 1, t, ..., t(n) , ...} with the sequence of frequencies omega, where n is an arbitrary nonnegative integer. omega B-splines persist all desirable properties of B-splines. Furthermore, they have some special properties advantageous for modeling free form curves and surfaces.
引用
收藏
页码:1167 / 1176
页数:10
相关论文
共 9 条
  • [1] A class of Bezier-like curves
    Chen, QY
    Wang, GZ
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (01) : 29 - 39
  • [2] KOCH PE, 1991, CURVES SURFACES, P225
  • [3] Li Y., 2005, Journal of Zhejiang University (Science), V6, P750
  • [4] Uniform hyperbolic polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (06) : 379 - 393
  • [5] Uniform trigonometric polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    [J]. SCIENCE IN CHINA SERIES F, 2002, 45 (05): : 335 - 343
  • [6] NUAT B-spline curves
    Wang, GZ
    Chen, QY
    Zhou, MH
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (02) : 193 - 205
  • [7] C-curves: An extension of cubic curves
    Zhang, JW
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (03) : 199 - 217
  • [8] Zhang JW, 1999, GRAPH MODEL IM PROC, V61, P2, DOI 10.1006/prmp.1999.0490
  • [9] Two different forms of C-B-splines
    Zhang, JW
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (01) : 31 - 41