Conformationally restricted nucleotides as a probe of structure-function relationships in RNA

被引:18
|
作者
Julien, Kristine R. [1 ]
Sumita, Minako [1 ]
Chen, Po-Han
Laird-Offringa, Ite A. [2 ,3 ]
Hoogstraten, Charles G. [1 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] Univ So Calif, Dept Biochem & Mol Biol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Keck Sch Med, Dept Surg, Los Angeles, CA 90089 USA
关键词
locked nucleic acid; lead-dependent ribozyme; RNA-protein recognition; sugar pucker; thermodynamics;
D O I
10.1261/rna.866408
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We introduce the use of commercially available locked nucleic acids (LNAs) as a functional probe in RNA. LNA nucleotides contain a covalent linkage that restricts the pseudorotation phase of the ribose to C3'-endo (A-form). Introduction of an LNA at a single site thus allows the role of ribose structure and dynamics in RNA function to be assessed. We apply LNA probing at multiple sites to analyze self-cleavage in the lead-dependent ribozyme (leadzyme), thermodynamic stability in the UUCG tetraloop, and the kinetics of recognition of U1A protein by U1 snRNA hairpin II. In the leadzyme, locking a single guanosine residue into the C3'-endo pucker increases the catalytic rate by a factor of 20, despite the fact that X-ray crystallographic and NMR structures of the leadzyme ground state reported a C2'-endo conformation at this site. These results strongly suggest that a conformational change at this position is critical for catalytic function. Functional insights obtained in all three systems demonstrate the highly general applicability of LNA probing in analysis of the role of ribose orientation in RNA structure, dynamics, and function.
引用
收藏
页码:1632 / 1643
页数:12
相关论文
共 50 条
  • [1] Structure-function relationships of RNA: A modeling approach
    Leclerc, F
    Llorente, B
    Cedergren, R
    RNA-LIGAND INTERACTIONS PT A, 2000, 317 : 457 - 470
  • [2] Structure-function relationships among RNA-dependent RNA polymerases
    Ng, Kenneth K. -S.
    Arnold, Jamie J.
    Cameron, Craig E.
    RNA INTERFERENCE, 2008, 320 : 137 - 156
  • [3] Structure-function relationships in RNA and RNP enzymes: Recent advances
    Hoogstraten, Charles G.
    Sumita, Minako
    BIOPOLYMERS, 2007, 87 (5-6) : 317 - 328
  • [4] ACTIVATION AND STRUCTURE-FUNCTION RELATIONSHIPS
    ROBBINS, KC
    SUMMARIA, L
    MICROVASCULAR RESEARCH, 1973, 6 (02) : 253 - 253
  • [5] STRUCTURE-FUNCTION RELATIONSHIPS IN SUBTILISIN
    ESTELL, DA
    GRAYCAR, TP
    ADAMS, R
    POWER, SD
    ULLTSCH, M
    BOTT, RR
    CUNNINGHAM, BC
    CARTER, P
    WELLS, JA
    BIOCHEMISTRY, 1988, 27 (08) : 3078 - 3078
  • [6] Structure-function relationships in the ferritins
    Harrison, PM
    Hempstead, PD
    Artymiuk, PJ
    Andrews, SC
    METAL IONS IN BIOLOGICAL SYSTEMS, VOL 35: IRON TRANSPORT AND STORAGE IN MICROORGANISMS, PLANTS, AND ANIMALS, 1998, 35 : 435 - 477
  • [7] Structure-Function Relationships of PEDF
    Kawaguchi, T.
    Yamagishi, S. -I.
    Sata, M.
    CURRENT MOLECULAR MEDICINE, 2010, 10 (03) : 302 - 311
  • [8] Structure-function relationships in cheese
    Lamichhane, Prabin
    Kelly, Alan L.
    Sheehan, Jeremiah J.
    JOURNAL OF DAIRY SCIENCE, 2018, 101 (03) : 2692 - 2709
  • [9] Structure-function relationships in polymerases
    Delarue, M
    FOLDING SELF-ASSEMBLY OF BIOLOGICAL MACROMOLECULES, PROCEEDINGS, 2004, : 267 - 301
  • [10] Structure-function relationships in calpains
    Campbell, Robert L.
    Davies, Peter L.
    BIOCHEMICAL JOURNAL, 2012, 447 : 335 - 351