An analysis of facial expression recognition under partial facial image occlusion

被引:141
作者
Kotsia, Irene [1 ]
Buciu, Loan [1 ]
Pitas, Loannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
关键词
facial expression recognition; Gabor filters; Discriminant Non-negative Matrix Factorization; support vector machines; partial occlusion;
D O I
10.1016/j.imavis.2007.11.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an analysis of the effect of partial occlusion on facial expression recognition is investigated. The classification from partially occluded images in one of the six basic facial expressions is performed using a method based on Gabor wavelets texture information extraction, a supervised image decomposition method based on Discriminant Non-negative Matrix Factorization and a shape-based method that exploits the geometrical displacement of certain facial features. We demonstrate how partial occlusion affects the above mentioned methods in the classification of the six basic facial expressions, and indicate the way partial occlusion affects human observers when recognizing facial expressions. An attempt to specify which part of the face (left, right, lower or upper region) contains more discriminant information for each facial expression, is also made and conclusions regarding the pairs of facial expressions misclassifications that each type of occlusion introduces, are drawn. (c) 2008 Published by Elsevier B.V.
引用
收藏
页码:1052 / 1067
页数:16
相关论文
共 40 条