Preparation and properties of carbon-fiber- and pine-cone-fiber-reinforced high-density polyethylene composites

被引:15
作者
Guo, Yong [1 ]
Liu, Dian [1 ]
Chen, Yuxia [1 ]
Zhang, Tingting [1 ]
Zhu, Shiliu [1 ]
机构
[1] Inst Anhui Agr Univ, 130 Changjiangxilu, Hefei 230036, Anhui, Peoples R China
关键词
crystallization; fibers; mechanical properties; morphology; thermogravimetric analysis (TGA); POLYMER COMPOSITES; THERMAL-PROPERTIES; POLYPROPYLENE; CRYSTALLIZATION; PERFORMANCE; MECHANISMS; IMPACT; SHEAR;
D O I
10.1002/app.47304
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, we were concerned with the physical properties of carbon-fiber- and pine-cone-fiber-reinforced high-density polyethylene prepared by compression molding. The resulting composites were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and mechanical testing. The results indicate that the manufacturing properties of the composites were improved with the addition of carbon fibers. The FTIR results showed that the carbon-fiber reinforcement of the composites was mainly achieved through physical effects. An appropriate content of carbon-fiber addition improved the interface combination between the fibers and matrix; carbon fibers improve the water absorption of the material, and the relative crystallinity of the composite increased with increasing carbon-fiber addition. With increasing carbon-fiber content, the thermal decomposition temperature of the composites increased, and the thermal stability of the composites improved. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47304.
引用
收藏
页数:7
相关论文
共 27 条
[1]  
Agarwal U. P., 1971, CELLUL, V2017, P24
[2]   Pine cone fiber/clay hybrid composite: Mechanical and thermal properties [J].
Arrakhiz, F. Z. ;
Benmoussa, K. ;
Bouhfid, R. ;
Qaiss, A. .
MATERIALS & DESIGN, 2013, 50 :376-381
[3]   Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene [J].
Arrakhiz, F. Z. ;
El Achaby, M. ;
Benmoussa, K. ;
Bouhfid, R. ;
Essassi, E. M. ;
Qaiss, A. .
MATERIALS & DESIGN, 2012, 40 :528-535
[4]   Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers [J].
Bledzki, A. K. ;
Franciszczak, P. ;
Osman, Z. ;
Elbadawi, M. .
INDUSTRIAL CROPS AND PRODUCTS, 2015, 70 :91-99
[5]   Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites [J].
Chen, Po-Yuan ;
Lian, Hong-Yuan ;
Shih, Yeng-Fong ;
Chen-Wei, Su-Mei ;
Jeng, Ru-Jong .
MATERIALS CHEMISTRY AND PHYSICS, 2017, 196 :249-255
[6]   Dynamic Mechanical Thermal Analysis of Polymer Composites Reinforced with Natural Fibers [J].
Costa, C. S. M. F. ;
Fonseca, A. C. ;
Serra, A. C. ;
Coelho, J. F. J. .
POLYMER REVIEWS, 2016, 56 (02) :362-383
[7]   Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties [J].
Dong, Yu ;
Ghataura, Arvinder ;
Takagi, Hitoshi ;
Haroosh, Hazim J. ;
Nakagaito, Antonio N. ;
Lau, Kin-Tak .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 63 :76-84
[8]   Biocomposites reinforced with natural fibers: 2000-2010 [J].
Faruk, Omar ;
Bledzki, Andrzej K. ;
Fink, Hans-Peter ;
Sain, Mohini .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (11) :1552-1596
[9]   β-Crystal in injection moulded poly(ethylene terephthalate) fibre/isotactic polypropylene composite [J].
Ji, Caiqiao ;
Xie, Mancun ;
Chang, Baobao ;
Dai, Kun ;
Wang, Bo ;
Zheng, Guoqiang ;
Liu, Chuntai ;
Shen, Changyu .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 46 :26-33
[10]   A review on the tensile properties of natural fiber reinforced polymer composites [J].
Ku, H. ;
Wang, H. ;
Pattarachaiyakoop, N. ;
Trada, M. .
COMPOSITES PART B-ENGINEERING, 2011, 42 (04) :856-873