DNA-binding specificity and molecular functions of NAC transcription factors

被引:186
|
作者
Olsen, AN
Ernst, HA
Lo Leggio, L
Skriver, K
机构
[1] Univ Copenhagen, Inst Mol Biol & Physiol, DK-1353 Copenhagen, Denmark
[2] Univ Copenhagen, Ctr Crystallog Studies, Dept Chem, DK-2100 Copenhagen, Denmark
关键词
DNA binding; NAC transcription factor; dimerization; mutational analysis; binding site selection;
D O I
10.1016/j.plantsci.2005.05.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites for two NAC proteins. The consensus sequences are similar, but not identical; both contain the core CGT[GA]. The strict consensus sequences, comprising only the most frequent base at each position, are: TTNCGTA and TTGCGTGT. In silico analysis of target promoter regions corroborated the selection results. Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding. The ability of NAC proteins to dimerize and to bind DNA was analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding. Thus, the results presented here contribute significantly to our understanding of the specificity and molecular functions of the NAC protein DNA-binding domain. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:785 / 797
页数:13
相关论文
共 50 条
  • [21] Structural insights into the DNA-binding specificity of E2F family transcription factors
    Ekaterina Morgunova
    Yimeng Yin
    Arttu Jolma
    Kashyap Dave
    Bernhard Schmierer
    Alexander Popov
    Nadejda Eremina
    Lennart Nilsson
    Jussi Taipale
    Nature Communications, 6
  • [22] DNA-BINDING MOTIFS FROM EUKARYOTIC TRANSCRIPTION FACTORS
    BURLEY, SK
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (01) : 3 - 11
  • [23] DNA-Binding Small Molecules as Inhibitors of Transcription Factors
    Leung, Chung-Hang
    Chan, Daniel Shiu-Hin
    Ma, Victor Pui-Yan
    Ma, Dik-Lung
    MEDICINAL RESEARCH REVIEWS, 2013, 33 (04) : 823 - 846
  • [24] Custom DNA-binding proteins and artificial transcription factors
    Lee, DK
    Seol, W
    Kim, JS
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2003, 3 (06) : 645 - 657
  • [25] A GO catalogue of human DNA-binding transcription factors
    Lovering, Ruth C.
    Gaudet, Pascale
    Acencio, Marcio L.
    Ignatchenko, Alex
    Jolma, Arttu
    Fornes, Oriol
    Kuiper, Martin
    Kulakovskiy, Ivan, V
    Laegreid, Astrid
    Martin, Maria J.
    Logie, Colin
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2021, 1864 (11-12):
  • [26] Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors
    Schroeder, Adrian
    Eichner, Johannes
    Supper, Jochen
    Eichner, Jonas
    Wanke, Dierk
    Henneges, Carsten
    Zell, Andreas
    PLOS ONE, 2010, 5 (11):
  • [27] Evaluation of the Abundance of DNA-Binding Transcription Factors in Prokaryotes
    Sanchez, Israel
    Hernandez-Guerrero, Rafael
    Mendez-Monroy, Paul Erick
    Martinez-Nunez, Mario Alberto
    Ibarra, Jose Antonio
    Perez-Rueda, Ernesto
    GENES, 2020, 11 (01)
  • [28] Molecular Evolution of the GATA Family of Transcription Factors: Conservation Within the DNA-Binding Domain
    Jason A. Lowry
    William R. Atchley
    Journal of Molecular Evolution, 2000, 50 : 103 - 115
  • [29] Molecular evolution of the GATA family of transcription factors: Conservation within the DNA-binding domain
    Lowry, JA
    Atchley, WR
    JOURNAL OF MOLECULAR EVOLUTION, 2000, 50 (02) : 103 - 115
  • [30] Determination of the DNA-binding specificity of the extant SIX transcription factor family
    Avellanet-Crespo, Yeriel
    Velazquez, Rosalba
    Rodriguez-Martinez, Jose
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (03) : S463 - S463