Braid topologies for quantum computation

被引:109
作者
Bonesteel, NE [1 ]
Hormozi, L
Zikos, G
Simon, SH
机构
[1] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA
[2] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
D O I
10.1103/PhysRevLett.95.140503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particlelike excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on the topology of the braids formed by these world lines. We show how to find braids that yield a universal set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly promising for experimental realization.
引用
收藏
页数:4
相关论文
共 26 条
  • [1] Stable skyrmions in two-component Bose-Einstein condensates
    Battye, RA
    Cooper, NR
    Sutcliffe, PM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (08) : 4 - 080401
  • [2] Practical scheme for quantum computation with any two-qubit entangling gate
    Bremner, MJ
    Dawson, CM
    Dodd, JL
    Gilchrist, A
    Harrow, AW
    Mortimer, D
    Nielsen, MA
    Osborne, TJ
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (24)
  • [3] Topologically protected qubits from a possible non-Abelian fractional quantum Hall state
    Das Sarma, S
    Freedman, M
    Nayak, C
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [4] Universal quantum computation with the exchange interaction
    DiVincenzo, DP
    Bacon, D
    Kempe, J
    Burkard, G
    Whaley, KB
    [J]. NATURE, 2000, 408 (6810) : 339 - 342
  • [5] Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation -: art. no. 214501
    Douçot, B
    Ioffe, LB
    Vidal, J
    [J]. PHYSICAL REVIEW B, 2004, 69 (21) : 214501 - 1
  • [6] Controlling spin exchange interactions of ultracold atoms in optical lattices
    Duan, LM
    Demler, E
    Lukin, MD
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (09)
  • [7] Realizing non-Abelian statistics in time-reversal-invariant systems
    Fendley, P
    Fradkin, E
    [J]. PHYSICAL REVIEW B, 2005, 72 (02)
  • [8] A class of P, T-invariant topological phases of interacting electrons
    Freedman, M
    Nayak, C
    Shtengel, K
    Walker, K
    Wang, ZH
    [J]. ANNALS OF PHYSICS, 2004, 310 (02) : 428 - 492
  • [9] A modular functor which is universal for quantum computation
    Freedman, MH
    Larsen, M
    Wang, ZH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) : 605 - 622
  • [10] Frohlich J., 1990, Reviews in Mathematical Physics, V2, P251, DOI 10.1142/S0129055X90000107