An adaptive numerical method for semi-infinite elliptic control problems based on error estimates

被引:4
作者
Merino, Pedro [1 ]
Neitzel, Ira [2 ]
Troeltzsch, Fredi [3 ]
机构
[1] Escuela Politec Nacl, Dept Matemat, MODEMAT, Res Ctr Math Modelling, Quito, Ecuador
[2] Tech Univ Munich, Ctr Math Sci M17, D-85748 Garching, Germany
[3] Tech Univ Berlin, Fak Math & Nat Wissensch 2, D-10623 Berlin, Germany
基金
奥地利科学基金会;
关键词
optimal control; elliptic partial differential equation; FEM; semi-infinite programming; numerical methods; OPTIMALITY;
D O I
10.1080/10556788.2014.932789
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We discuss numerical reduction methods for an optimal control problem of semi-infinite type with finitely many control parameters but infinitely many constraints. We invoke known a priori error estimates to reduce the number of constraints. In a first strategy, we apply uniformly refined meshes, whereas in a second more heuristic strategy we use adaptive mesh refinement and provide an a posteriori error estimate for the control based on perturbation arguments.
引用
收藏
页码:492 / 515
页数:24
相关论文
共 24 条
[1]  
[Anonymous], 1969, Optimization by vector space methods
[2]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[3]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[4]   A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints [J].
Benedix, Olaf ;
Vexler, Boris .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (01) :3-25
[5]  
de Los Reyes JC, 2008, CONTROL CYBERN, V37, P5
[6]   OPTIMALITY, STABILITY, AND CONVERGENCE IN NONLINEAR CONTROL [J].
DONTCHEV, AL ;
HAGER, WW ;
POORE, AB ;
YANG, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 31 (03) :297-326
[7]  
Eriksson K., 1995, Acta Numer, V4, P105, DOI DOI 10.1017/S0962492900002531
[8]  
Gilbarg D., 2001, Classics in Mathematics
[9]  
Gunther A., 2012, CONSTRAINED OPTIMIZA, P303, DOI [10.1007/978-3-0348-0133-1_17, DOI 10.1007/978-3-0348-0133-1_17]
[10]   SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS [J].
HETTICH, R ;
KORTANEK, KO .
SIAM REVIEW, 1993, 35 (03) :380-429