Enhanced Electrocatalytic CO2 Reduction of Bismuth Nanosheets with Introducing Surface Bismuth Subcarbonate

被引:20
|
作者
Liu, Shiyuan [1 ]
Hu, Botao [1 ]
Zhao, Junkai [1 ,2 ]
Jiang, Wenjun [1 ]
Feng, Deqiang [1 ]
Zhang, Ce [1 ]
Yao, Wei [1 ]
机构
[1] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[2] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; bismuth; Bi2O2CO3; interface; formic acid; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FORMATE; BI; ELECTROREDUCTION; CATALYSTS; TRANSFORMATION; NANOPARTICLES; NANOTUBES; SHAPE;
D O I
10.3390/coatings12020233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrocatalytic CO2 reduction reaction (CO2RR) into hydrocarbon products is one of the most promising approaches for CO2 utilization in modern society. However, the application of CO2RR requires optimizing state-of-the-art catalysts as well as elucidating the catalytic interface formation mechanism. In this study, a flower-like nano-structured Bi catalyst is prepared by a facile pulse current electrodeposition method wherein the morphologies could be accurately controlled. Interestingly, nano-structured Bi is inclined to generate Bi2O2CO3 in the air and form a stable Bi2O2CO3@Bi interface, which could enhance the CO2 adsorption and conversion. In-situ Raman spectroscopy analysis also proves the existence of Bi2O2CO3 on the electrode surface. In a practical CO2 reduction test by a flow-cell reactor, the Bi2O2CO3@Bi electrode delivers a high faradaic efficiency of the CO2 to formate/formic acid (~90%) at -1.07 V vs. reversible hydrogen electrode (RHE) with no obvious decay during more than a 10 h continuous test. The introducing surface Bi2O2CO3 in nano-structured Bi supports a promising strategy as well as facile access to prepare improved CO2RR electrocatalysts.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Nanocomposite of Bismuth Clusters and Bi2O2CO3 Sheets for Highly Efficient Electrocatalytic Reduction of CO2 to Formate
    Lin, Li
    He, Xiaoyang
    Zhang, Xia-Guang
    Ma, Wenchao
    Zhang, Biao
    Wei, Diye
    Xie, Shunji
    Zhang, Qinghong
    Yi, Xiaodong
    Wang, Ye
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
  • [42] Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2Reduction
    Zhao, Yong
    Tan, Xin
    Yang, Wanfeng
    Jia, Chen
    Chen, Xianjue
    Ren, Wenhao
    Smith, Sean C.
    Zhao, Chuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (48) : 21493 - 21498
  • [43] Electrocatalytic Alloys for CO2 Reduction
    He, Jingfu
    Johnson, Noah J. J.
    Huang, Aoxue
    Berlinguette, Curtis P.
    CHEMSUSCHEM, 2018, 11 (01) : 48 - 57
  • [44] Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets
    Li, Fengwang
    Chen, Lu
    Xue, Mianqi
    Williams, Tim
    Zhang, Ying
    MacFarlane, Douglas R.
    Zhang, Jie
    NANO ENERGY, 2017, 31 : 270 - 277
  • [45] Electron-Rich Bi Nanosheets Promote CO2•- Formation for High-Performance and pH-Universal Electrocatalytic CO2 Reduction
    Li, Zaiqi
    Sun, Bin
    Xiao, Difei
    Wang, Zeyan
    Liu, Yuanyuan
    Zheng, Zhaoke
    Wang, Peng
    Dai, Ying
    Cheng, Hefeng
    Huang, Baibiao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (11)
  • [46] Residual iodine on in-situ transformed bismuth nanosheets induced activity difference in CO2 electroreduction
    Wang, Dan
    Wang, Yanying
    Chang, Kuan
    Zhang, Yaning
    Wang, Zhenlin
    Zhang, Zhiduo
    Pan, Chengsi
    Lou, Yang
    Zhu, Yongfa
    Zhang, Ying
    JOURNAL OF CO2 UTILIZATION, 2022, 55
  • [47] Recent Progress in Surface and Interface Engineering for Electrocatalytic CO2 Reduction
    Hu, Xiaokang
    Hu, Jiuyi
    Zheng, Shaohui
    Fan, Yun
    Li, Hongfeng
    Zhang, Suoying
    Liu, Wenjing
    Zha, Baoli
    Huo, Fengwei
    Saleem, Faisal
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
  • [48] Exploring the influence of atomic level structure, porosity, and stability of bismuth(iii) coordination polymers on electrocatalytic CO2 reduction
    Frank, Sara
    Grape, Erik Svensson
    Bojesen, Espen Drath
    Larsen, Rasmus
    Lamagni, Paolo
    Catalano, Jacopo
    Inge, A. Ken
    Lock, Nina
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (46) : 26298 - 26310
  • [49] Effect of Annealing Treatment on Electrocatalytic Properties of Copper Electrodes toward Enhanced CO2 Reduction
    Lopes, Osmando F.
    Varela, Hamilton
    CHEMISTRYSELECT, 2018, 3 (31): : 9046 - 9055
  • [50] Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts
    Fan, Tingting
    Ma, Wenchao
    Xie, Mingcan
    Liu, Huan
    Zhang, Jiguang
    Yang, Shuangli
    Huang, Pingping
    Dong, Yunyun
    Chen, Zhou
    Yi, Xiaodong
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03):