Enhanced Electrocatalytic CO2 Reduction of Bismuth Nanosheets with Introducing Surface Bismuth Subcarbonate

被引:20
|
作者
Liu, Shiyuan [1 ]
Hu, Botao [1 ]
Zhao, Junkai [1 ,2 ]
Jiang, Wenjun [1 ]
Feng, Deqiang [1 ]
Zhang, Ce [1 ]
Yao, Wei [1 ]
机构
[1] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[2] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; bismuth; Bi2O2CO3; interface; formic acid; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FORMATE; BI; ELECTROREDUCTION; CATALYSTS; TRANSFORMATION; NANOPARTICLES; NANOTUBES; SHAPE;
D O I
10.3390/coatings12020233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrocatalytic CO2 reduction reaction (CO2RR) into hydrocarbon products is one of the most promising approaches for CO2 utilization in modern society. However, the application of CO2RR requires optimizing state-of-the-art catalysts as well as elucidating the catalytic interface formation mechanism. In this study, a flower-like nano-structured Bi catalyst is prepared by a facile pulse current electrodeposition method wherein the morphologies could be accurately controlled. Interestingly, nano-structured Bi is inclined to generate Bi2O2CO3 in the air and form a stable Bi2O2CO3@Bi interface, which could enhance the CO2 adsorption and conversion. In-situ Raman spectroscopy analysis also proves the existence of Bi2O2CO3 on the electrode surface. In a practical CO2 reduction test by a flow-cell reactor, the Bi2O2CO3@Bi electrode delivers a high faradaic efficiency of the CO2 to formate/formic acid (~90%) at -1.07 V vs. reversible hydrogen electrode (RHE) with no obvious decay during more than a 10 h continuous test. The introducing surface Bi2O2CO3 in nano-structured Bi supports a promising strategy as well as facile access to prepare improved CO2RR electrocatalysts.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Electrochemical Transformation of Facet-Controlled BiOI into Mesoporous Bismuth Nanosheets for Selective Electrocatalytic Reduction of CO2 to Formic Acid
    Wu, Dan
    Liu, Jianwen
    Liang, Yue
    Xiang, Kun
    Fu, Xian-Zhu
    Luo, Jing-Li
    CHEMSUSCHEM, 2019, 12 (20) : 4700 - 4707
  • [32] Copper-Bismuth Bimetallic Microspheres for Selective Electrocatalytic Reduction of CO2 to Formate
    Jia, Lin
    Yang, Hui
    Deng, Jun
    Chen, Junmei
    Zhou, Yuan
    Ding, Pan
    Li, Leigang
    Han, Na
    Li, Yanguang
    CHINESE JOURNAL OF CHEMISTRY, 2019, 37 (05) : 497 - 500
  • [33] In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO2 Reduction to Formate
    Peng, Chan-Juan
    Wu, Xin-Tao
    Zeng, Guang
    Zhu, Qi-Long
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (12) : 1539 - 1544
  • [34] Role of Facets and Morphologies of Different Bismuth-Based Materials for CO2 Reduction to Fuels
    Talukdar, Smritirekha
    Montini, Tiziano
    MATERIALS, 2024, 17 (13)
  • [35] CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst
    Avila-Bolivar, Beatriz
    Cepitis, Ritums
    Alam, Mahboob
    Assafrei, Juergen-Martin
    Ping, Kefeng
    Aruvali, Jaan
    Kikas, Arvo
    Kisand, Vambola
    Vlassov, Sergei
    Kaarik, Maike
    Leis, Jaan
    Ivaniststev, Vladislav
    Starkov, Pavel
    Montiel, Vicente
    Solla-Gullon, Jose
    Kongi, Nadezda
    JOURNAL OF CO2 UTILIZATION, 2022, 59
  • [36] Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential
    Zhang, Xiaolong
    Sun, Xinghuan
    Guo, Si-Xuan
    Bond, Alan M.
    Zhang, Jie
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) : 1334 - 1340
  • [37] Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate
    Du Yuncheng
    Zheng Xuchen
    Xue Yurui
    Li Yuliang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (06) : 1380 - 1386
  • [38] Electroreduction of CO2 on bismuth nanoparticles in seawater
    Mason, Aaron
    MacDonald, Kyla
    Murphy, William
    Bennett, Craig
    Bertin, Erwan
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (02) : 217 - 226
  • [39] Integrated Bismuth Oxide Ultrathin Nanosheets/Carbon Foam Electrode for Highly Selective and Energy-Efficient Electrocatalytic Conversion of CO2 to HCOOH
    Meng, Fan-Lu
    Zhang, Qi
    Liu, Kai-Hua
    Zhang, Xin-Bo
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (18) : 4013 - 4018
  • [40] Reconstruction of Ultrahigh-Aspect-Ratio Crystalline Bismuth-Organic Hybrid Nanobelts for Selective Electrocatalytic CO2 Reduction to Formate
    Zeng, Guang
    He, Yingchun
    Ma, Dong-Dong
    Luo, Shiwen
    Zhou, Shenghua
    Cao, Changsheng
    Li, Xiaofang
    Wu, Xin-Tao
    Liao, Hong-Gang
    Zhu, Qi-Long
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (30)