Enhanced Electrocatalytic CO2 Reduction of Bismuth Nanosheets with Introducing Surface Bismuth Subcarbonate

被引:20
|
作者
Liu, Shiyuan [1 ]
Hu, Botao [1 ]
Zhao, Junkai [1 ,2 ]
Jiang, Wenjun [1 ]
Feng, Deqiang [1 ]
Zhang, Ce [1 ]
Yao, Wei [1 ]
机构
[1] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[2] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; bismuth; Bi2O2CO3; interface; formic acid; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FORMATE; BI; ELECTROREDUCTION; CATALYSTS; TRANSFORMATION; NANOPARTICLES; NANOTUBES; SHAPE;
D O I
10.3390/coatings12020233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrocatalytic CO2 reduction reaction (CO2RR) into hydrocarbon products is one of the most promising approaches for CO2 utilization in modern society. However, the application of CO2RR requires optimizing state-of-the-art catalysts as well as elucidating the catalytic interface formation mechanism. In this study, a flower-like nano-structured Bi catalyst is prepared by a facile pulse current electrodeposition method wherein the morphologies could be accurately controlled. Interestingly, nano-structured Bi is inclined to generate Bi2O2CO3 in the air and form a stable Bi2O2CO3@Bi interface, which could enhance the CO2 adsorption and conversion. In-situ Raman spectroscopy analysis also proves the existence of Bi2O2CO3 on the electrode surface. In a practical CO2 reduction test by a flow-cell reactor, the Bi2O2CO3@Bi electrode delivers a high faradaic efficiency of the CO2 to formate/formic acid (~90%) at -1.07 V vs. reversible hydrogen electrode (RHE) with no obvious decay during more than a 10 h continuous test. The introducing surface Bi2O2CO3 in nano-structured Bi supports a promising strategy as well as facile access to prepare improved CO2RR electrocatalysts.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Formation of bismuth nanosheets on copper foam coupled with nanobubble technology for enhanced electrocatalytic CO2 reduction
    Wu, Kai
    Yang, Pengwei
    Fan, Shuaijun
    Wu, Yifan
    Ma, Jingxiang
    Yang, Lijuan
    Zhu, Hongtao
    Ma, Xiaoying
    Gao, Heli
    Chen, Wentong
    Jia, Jun
    Ma, Shuangchen
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (48) : 33972 - 33983
  • [2] Phosphomolybdic Acid-Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO2 to Formate
    Guo, Si-Xuan
    Zhang, Ying
    Zhang, Xiaolong
    Easton, Christopher D.
    MacFarlane, Douglas R.
    Zhang, Jie
    CHEMSUSCHEM, 2019, 12 (05) : 1091 - 1100
  • [3] Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate
    Tang, Shang-Feng
    Lu, Xiu-Li
    Zhang, Chao
    Wei, Zhen-Wei
    Si, Rui
    Lu, Tong-Bu
    SCIENCE BULLETIN, 2021, 66 (15) : 1533 - 1541
  • [4] Nanoporous bismuth for the electrocatalytic reduction of CO2 to formate
    Wang, Xiaoyan
    Wang, Zhiyong
    Jin, Xianbo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (35) : 19195 - 19201
  • [5] situ transformation of bismuth-containing precursors into ultrathin bismuth nanosheets for enhanced electrochemical CO2 reduction
    Xu, Aihao
    Wei, Dong
    Chen, Xiangyu
    Yang, Taishun
    Huang, Yanping
    He, Huibing
    Xu, Jing
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [6] Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer
    Wang, Jing
    Mao, Jiating
    Zheng, Xiaoli
    Zhou, Yannan
    Xu, Qun
    APPLIED SURFACE SCIENCE, 2021, 562
  • [7] Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO2 Reduction Performance
    Zhang, Ying
    Zhang, Xiaolong
    Ling, Yunzhi
    Li, Fengwang
    Bond, Alan M.
    Zhang, Jie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (40) : 13283 - 13287
  • [8] Selective Synthesis of Nanospheres and Nanosheets of Bismuth Subcarbonate
    Jeon, Seong Gi
    Park, Sun Hwa
    Yu, Jin
    Song, Jae Yong
    CHEMISTRY LETTERS, 2015, 44 (12) : 1717 - 1719
  • [9] Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
    Han, Na
    Wang, Yu
    Yang, Hui
    Deng, Jun
    Wu, Jinghua
    Li, Yafei
    Li, Yanguang
    NATURE COMMUNICATIONS, 2018, 9
  • [10] Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
    Na Han
    Yu Wang
    Hui Yang
    Jun Deng
    Jinghua Wu
    Yafei Li
    Yanguang Li
    Nature Communications, 9