Transferrable Prototypical Networks for Unsupervised Domain Adaptation

被引:281
|
作者
Pan, Yingwei [1 ]
Yao, Ting [1 ]
Li, Yehao [2 ]
Wang, Yu [1 ]
Ngo, Chong-Wah [3 ]
Mei, Tao [1 ]
机构
[1] JD AI Res, Beijing, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou, Peoples R China
[3] City Univ Hong Kong, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1109/CVPR.2019.00234
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new idea for unsupervised domain adaptation via a remold of Prototypical Networks, which learn an embedding space and perform classification via a remold of the distances to the prototype of each class. Specifically, we present Transferrable Prototypical Networks (TPN) for adaptation such that the prototypes for each class in source and target domains are close in the embedding space and the score distributions predicted by prototypes separately on source and target data are similar. Technically, TPN initially matches each target example to the nearest prototype in the source domain and assigns an example a "pseudo" label. The prototype of each class could then be computed on source-only, target-only and source-target data, respectively. The optimization of TPN is end-to-end trained by jointly minimizing the distance across the prototypes on three types of data and KL-divergence of score distributions output by each pair of the prototypes. Extensive experiments are conducted on the transfers across MNIST, USPS and SVHN datasets, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, we obtain an accuracy of 80.4% of single model on VisDA 2017 dataset.
引用
收藏
页码:2234 / 2242
页数:9
相关论文
共 50 条
  • [41] Dual-aligned unsupervised domain adaptation with graph convolutional networks
    Fei Wu
    Pengfei Wei
    Guangwei Gao
    Chang-Hui Hu
    Qi Ge
    Xiao-Yuan Jing
    Multimedia Tools and Applications, 2022, 81 : 14979 - 14997
  • [42] Deep Multi-Modality Adversarial Networks for Unsupervised Domain Adaptation
    Ma, Xinhong
    Zhang, Tianzhu
    Xu, Changsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (09) : 2419 - 2431
  • [43] Unsupervised Domain Adaptation by Statistics Alignment for Deep Sleep Staging Networks
    Fan, Jiahao
    Zhu, Hangyu
    Jiang, Xinyu
    Meng, Long
    Chen, Chen
    Fu, Cong
    Yu, Huan
    Dai, Chenyun
    Chen, Wei
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 205 - 216
  • [44] Unsupervised domain adaptation with progressive adaptation of subspaces
    Li, Weikai
    Chen, Songcan
    PATTERN RECOGNITION, 2022, 132
  • [45] Unsupervised domain adaptation with progressive adaptation of subspaces
    Li, Weikai
    Chen, Songcan
    Pattern Recognition, 2022, 132
  • [46] Semantic adaptation network for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    NEUROCOMPUTING, 2021, 454 : 313 - 323
  • [47] Contrastive Adaptation Network for Unsupervised Domain Adaptation
    Kang, Guoliang
    Jiang, Lu
    Yang, Yi
    Hauptmann, Alexander G.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4888 - 4897
  • [48] Bridging domain spaces for unsupervised domain adaptation
    Na, Jaemin
    Jung, Heechul
    Chang, Hyung Jin
    Hwang, Wonjun
    PATTERN RECOGNITION, 2025, 164
  • [49] Unsupervised Domain Adaptation by Domain Invariant Projection
    Baktashmotlagh, Mahsa
    Harandi, Mehrtash T.
    Lovell, Brian C.
    Salzmann, Mathieu
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 769 - 776
  • [50] Prototypical Partial Optimal Transport for Universal Domain Adaptation
    Yang, Yucheng
    Gu, Xiang
    Sun, Jian
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10852 - 10860