Chebyshev type inequality for Choquet integral and comonotonicity

被引:16
|
作者
Girotto, Bruno [1 ]
Holzer, Silvano [1 ]
机构
[1] Univ Trieste, Dipartimento Sci Econ, I-34127 Trieste, Italy
关键词
Monotone set function; Additive measure; Choquet integral; Chebyshev inequality; Comonotonicity; SUGENO INTEGRALS;
D O I
10.1016/j.ijar.2011.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We supply a Chebyshev type inequality for Choquet integral and link this inequality with comonotonicity. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1118 / 1123
页数:6
相关论文
共 50 条
  • [1] A Chebyshev type inequality for Sugeno integral and comonotonicity
    Girotto, Bruno
    Holzer, Silvano
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (03) : 444 - 448
  • [2] Chebyshev's inequality for Choquet-like integral
    Sheng, Changtao
    Shi, Jiuliang
    Ouyang, Yao
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8936 - 8942
  • [3] Holder Type Inequality and Jensen Type Inequality for Choquet Integral
    Zhao, Xuan
    Zhang, Qiang
    KNOWLEDGE ENGINEERING AND MANAGEMENT, 2011, 123 : 219 - 224
  • [4] Multivariate Chebyshev inequality in generalized measure space based on Choquet integral
    Agahi, Hamzeh
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (19) : 9625 - 9628
  • [5] On the Chebyshev type inequality for seminormed fuzzy integral
    Ouyang, Yao
    Mesiar, Radko
    APPLIED MATHEMATICS LETTERS, 2009, 22 (12) : 1810 - 1815
  • [6] Generalizations of the Chebyshev-type inequality for Choquet-like expectation
    Agahi, Hamzeh
    Mohammadpour, Adel
    Mesiar, Radko
    INFORMATION SCIENCES, 2013, 236 : 168 - 173
  • [7] ON THE STOLARSKY-TYPE INEQUALITY FOR THE CHQOUET INTEGRAL AND THE GENERATED CHOQUET INTEGRAL
    Lee, Jeong Gon
    Jang, Lee-Chae
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (04) : 618 - 624
  • [8] On Fritz-Carlson Type Inequality for Sugeno Integral without Comonotonicity Condition
    Agahi, Hamzeh
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2018, 30 (01) : 105 - 114
  • [9] General Chebyshev Type Inequality for Seminormed Fuzzy Integral
    Boczek, Michal
    Hovana, Anton
    Hutnik, Ondrej
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2019), 2019, 11676 : 3 - 16
  • [10] RESULTS OF THE CHEBYSHEV TYPE INEQUALITY FOR PSEUDO-INTEGRAL
    Daraby, Bayaz
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 4 (01): : 91 - 100