Optimizing Single-Photon Avalanche Photodiodes for Dynamic Quantum Key Distribution Networks

被引:29
作者
Fan-Yuan, Guan-Jie [1 ,2 ,3 ]
Teng, Jun [1 ,2 ,3 ]
Wang, Shuang [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Chen, Wei [1 ,2 ,3 ]
He, De-Yong [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
Han, Zheng-Fu [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
[3] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
基金
中国国家自然科学基金;
关键词
FIELD;
D O I
10.1103/PhysRevApplied.13.054027
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum key distribution (QKD) networks can provide unconditional secure communications among many remote users. In real QKD networks, with the dynamic access and quit of nodes, qualities of various user links and the link lengths among different users, such as transmission loss, are different and changing. Customized optimization that aims at various channel environments offers a network performance benefit. In this paper, we propose including the detection efficiency, dark-count probability, and afterpulse rate of the single-photon avalanche photodiode (SPAD) into the parameter optimization by controlling its voltage and temperature to optimize the secure key rates in dynamic QKD networks. The result shows that our method improves the network adaptability to the variation and asymmetry of channel and profits the establishment of QKD networks in a complex channel environment. This method is suitable for arbitrary SPAD-based QKD system and network architecture.
引用
收藏
页数:9
相关论文
共 45 条
[1]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[3]  
Boughton JM, 2003, IMF STAFF PAPERS, V50, P1
[4]  
Bronzi D., 2012, ESSDERC 2012 - 42nd European Solid State Device Research Conference, P230, DOI 10.1109/ESSDERC.2012.6343375
[5]   Metropolitan all-pass and inter-city quantum communication network [J].
Chen, Teng-Yun ;
Wang, Jian ;
Liang, Hao ;
Liu, Wei-Yue ;
Liu, Yang ;
Jiang, Xiao ;
Wang, Yuan ;
Wan, Xu ;
Cai, Wen-Qi ;
Ju, Lei ;
Chen, Luo-Kan ;
Wang, Liu-Jun ;
Gao, Yuan ;
Chen, Kai ;
Peng, Cheng-Zhi ;
Chen, Zeng-Bing ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2010, 18 (26) :27217-27225
[6]  
Comandar LC, 2016, NAT PHOTONICS, V10, P312, DOI [10.1038/nphoton.2016.50, 10.1038/NPHOTON.2016.50]
[7]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[8]   Invited Review Article: Single-photon sources and detectors [J].
Eisaman, M. D. ;
Fan, J. ;
Migdall, A. ;
Polyakov, S. V. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (07)
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]   Modeling Alignment Error in Quantum Key Distribution Based on a Weak Coherent Source [J].
Fan-Yuan, Guan-Jie ;
Wang, Shuang ;
Yin, Zhen-Qiang ;
Chen, Wei ;
He, De-Yong ;
Han, Zheng-Fu ;
Guo, Guang-Can .
PHYSICAL REVIEW APPLIED, 2019, 12 (06)