Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition

被引:74
作者
Kim, Jaeyoung [1 ]
El-Khamy, Mostafa [1 ]
Lee, Jungwon [1 ]
机构
[1] Samsung Semicond Inc, 4921 Directors Pl, San Diego, CA 92107 USA
来源
18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION | 2017年
关键词
ASR; LSTM; GMM; RNN; CNN; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.21437/Interspeech.2017-477
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel architecture for a deep recurrent neural network, residual LSTM is introduced. A plain LSTM has an internal memory cell that can learn long term dependencies of sequential data. It also provides a temporal shortcut path to avoid vanishing or exploding gradients in the temporal domain. The residual LSTM provides an additional spatial shortcut path from lower layers for efficient training of deep networks with multiple LSTM layers. Compared with the previous work, highway LSTM. residual LSTM separates a spatial shortcut path with temporal one by using output layers, which can help to avoid a conflict between spatial and temporal-domain gradient flows. Furthermore, residual LSTM reuses the output projection matrix and the output gate of LSTM to control the spatial information flow instead of additional gate networks. which effectively reduces more than 10% of network parameters. An experiment for distant speech recognition on the AMI SDM corpus shows that 10-layer plain and highway LSTM networks presented 13.7% and 6.2% increase in WER over 3-layer baselines, respectively. On the contrary, 10-layer residual LSTM networks provided the lowest WER 41.0%. which corresponds to 3.3% and 2.8% WER reduction over plain and highway LSTM networks, respectively.
引用
收藏
页码:1591 / 1595
页数:5
相关论文
共 25 条
[1]   Convolutional Neural Networks for Speech Recognition [J].
Abdel-Hamid, Ossama ;
Mohamed, Abdel-Rahman ;
Jiang, Hui ;
Deng, Li ;
Penn, Gerald ;
Yu, Dong .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (10) :1533-1545
[2]  
Abdel-Hamid O, 2012, INT CONF ACOUST SPEE, P4277, DOI 10.1109/ICASSP.2012.6288864
[3]  
[Anonymous], 2014, TECH REP
[4]  
Carletta J, 2005, LECT NOTES COMPUT SC, V3869, P28
[5]   Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition [J].
Dahl, George E. ;
Yu, Dong ;
Deng, Li ;
Acero, Alex .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01) :30-42
[6]  
Dahl GE, 2011, INT CONF ACOUST SPEE, P4688
[7]  
Graves A, 2013, 2013 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), P273, DOI 10.1109/ASRU.2013.6707742
[8]  
He K., 2016, P IEEE COMPUTER SOC, P770
[9]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]