Neural modelling, control and optimisation of an industrial grinding process

被引:35
|
作者
Govindhasamy, JJ
McLoone, SF
Irwin, GW
French, JJ
Doyle, RP
机构
[1] Queens Univ Belfast, Dept Elect & Elect Engn, Intelligent Syst & Control Res Grp, Belfast BT9 5AH, Antrim, North Ireland
[2] Natl Univ Ireland Maynooth, Dept Elect Engn, Maynooth, Kildare, Ireland
[3] Seagate Technol Media Ltd, Limavady BT49 0HR, North Ireland
关键词
neural networks; nonlinear modelling; NARX models; disk grinding process; multilayer perceptrons; direct inverse model control; internal model control;
D O I
10.1016/j.conengprac.2004.11.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1243 / 1258
页数:16
相关论文
共 50 条
  • [31] Modelling of an industrial fluid catalytic cracking unit using neural networks
    Michalopoulos, J
    Papadokonstadakis, S
    Arampatzis, G
    Lygeros, A
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2001, 79 (A2): : 137 - 142
  • [32] Approximate Neural Economic Set-Point Optimisation for Control Systems
    Lawrynczuk, Maciej
    Tatjewski, Piotr
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2010, 6114 : 305 - 312
  • [33] Closed loop NOx control and optimisation using neural networks.
    Gabor, J
    Pakulski, D
    Swirski, K
    Domanski, PD
    POWER PLANTS AND POWER SYSTEMS CONTROL 2000, 2000, : 141 - 146
  • [34] Modelling and optimization of grinding processes
    E. Brinksmeier
    H. K. TÖnshoff
    C. Czenkusch
    C. Heinzel
    Journal of Intelligent Manufacturing, 1998, 9 : 303 - 314
  • [35] Modelling and optimization of grinding processes
    Brinksmeier, E
    Tonshoff, HK
    Czenkusch, C
    Heinzel, C
    JOURNAL OF INTELLIGENT MANUFACTURING, 1998, 9 (04) : 303 - 314
  • [36] Neural Network Control of Industrial Robots Using ROS
    Trinh, Minh
    Brecher, Christian
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 431 - 434
  • [37] A FUZZY NEURAL-NETWORK APPROACH FOR NONLINEAR PROCESS-CONTROL
    AOYAMA, A
    DOYLE, FJ
    VENKATASUBRAMANIAN, V
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1995, 8 (05) : 483 - 498
  • [38] Adaptive neural predictive control for industrial multivariable processes
    Lu, CH
    Tsai, CC
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2004, 218 (I7) : 557 - 567
  • [39] The use of elastic net and neural networks in industrial process tomography
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (05): : 59 - 62
  • [40] Modelling and control of drying processes using neural networks
    Jay, S
    Oliver, TN
    DRYING '96, VOL B, 1996, : 1393 - 1400