Interiors of Terrestrial Planets in Metric-Affine Gravity

被引:12
|
作者
Kozak, Aleksander [1 ]
Wojnar, Aneta [2 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, Pl Maxa Borna 9, PL-50206 Wroclaw, Poland
[2] Univ Tartu, Inst Phys, Lab Theoret Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia
关键词
modified gravity; Ricci-based gravity; Palatini gravity; exoplanets; planet's interior; EINSTEIN EQUATIONS; EARTH; UNIVERSALITY; TOMOGRAPHY;
D O I
10.3390/universe8010003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using a semiempirical approach, we show that modified gravity affects the internal properties of terrestrial planets, such as their physical characteristics of a core, mantle, and core-mantle boundary. We also apply these findings for modeling a two-layer exoplanet in Palatini f(R) gravity.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Metric-Affine Gravity as an effective field theory
    Baldazzi, A.
    Melichev, O.
    Percacci, R.
    ANNALS OF PHYSICS, 2022, 438
  • [32] Parity violating metric-affine gravity theories
    Iosifidis, Damianos
    Ravera, Lucrezia
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (11)
  • [33] Comment on "Metric-affine approach to teleparallel gravity"
    Formiga, J. B.
    PHYSICAL REVIEW D, 2013, 88 (06):
  • [34] An axially symmetric solution of metric-affine gravity
    Classical Quant Gravity, 12 (3253):
  • [35] An axially symmetric solution of metric-affine gravity
    Vlachynsky, EJ
    Tresguerres, R
    Obukhov, YN
    Hehl, FW
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) : 3253 - 3259
  • [36] BRST antifield treatment of metric-affine gravity
    Gronwald, F
    PHYSICAL REVIEW D, 1998, 57 (02): : 961 - 970
  • [37] Quadratic metric-affine gravity: solving for the affine-connection
    Iosifidis, Damianos
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (07):
  • [38] Two-dimensional metric-affine gravity
    Obukhov, YN
    PHYSICAL REVIEW D, 2004, 69 (06): : 6
  • [39] Exactly solvable connections in metric-affine gravity
    Iosifidis, Damianos
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (08)
  • [40] Metric-Affine Gravity and the Geometric Nature of Matter
    Ghodratallah Fasihi-Ramandi
    Shahroud Azami
    Vahid Pirhadi
    Gravitation and Cosmology, 2022, 28 : 102 - 107