Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons

被引:164
作者
Mazzamuto, F. [1 ]
Nguyen, V. Hung [1 ,2 ]
Apertet, Y. [1 ]
Caer, C. [1 ]
Chassat, C. [1 ]
Saint-Martin, J. [1 ]
Dollfus, P. [1 ]
机构
[1] Univ Paris 11, CNRS, Inst Fundamental Elect, UMR 8622, Orsay, France
[2] Vietnamese Acad Sci & Technol, Inst Phys, Hanoi, Vietnam
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 23期
关键词
THERMAL-CONDUCTIVITY; TRANSPORT; TRANSISTORS; EDGE; THERMOPOWER; CONDUCTANCE;
D O I
10.1103/PhysRevB.83.235426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Strongly enhanced thermoelectric properties are predicted for graphene nanoribbons (GNRs) with optimized pattern. By means of nonequilibrium Green's function atomistic simulation of electron and phonon transport, we analyze the thermal and electrical properties of perfect GNRs as a function of their width and their edge orientation to identify a strategy likely to degrade the thermal conductance while retaining high electronic conductance and thermopower. An effect of resonant tunneling of electrons is detected in mixed GNRs consisting of alternate zigzag and armchair sections. To fully benefit from this effect and from strongly reduced phonon thermal conductance, a structure with armchair and zigzag sections of different widths is proposed. It is shown to provide a high thermoelectric factor of merit ZT exceeding unity at room temperature.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Modeling of nanoscale devices
    Anantram, M. P.
    Lundstrom, Mark S.
    Nikonov, Dmitri E.
    [J]. PROCEEDINGS OF THE IEEE, 2008, 96 (09) : 1511 - 1550
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Thermal stability of graphene edge structure and graphene nanoflakes
    Barnard, Amanda S.
    Snook, Ian K.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (09)
  • [4] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Thermoelectric properties of graphene nanoribbons, junctions and superlattices
    Chen, Y.
    Jayasekera, T.
    Calzolari, A.
    Kim, K. W.
    Nardelli, M. Buongiorno
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (37)
  • [7] Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures
    Do, V. Nam
    Nguyen, V. Hung
    Dollfus, P.
    Bournel, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (06)
  • [8] Giant thermoelectric effect in graphene
    Dragoman, D.
    Dragoman, M.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [9] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191