CNN-based Method for Segmenting Tree Bark Surface Singularites

被引:0
|
作者
Delconte, Florian [1 ]
Ngo, Phuc [1 ]
Kerautret, Bertrand [2 ]
Debled-Rennesson, Isabelle [1 ]
Nguyen, Van-Tho [3 ]
Constant, Thiery [4 ]
机构
[1] Univ Lorraine, LORIA, ADAGIo, Nancy, France
[2] Univ Lumiere Lyon 2, LIRIS, Imagine, Lyon, France
[3] Univ Sherbrooke, Ctr Applicat & Rech Teledetect, Dept Appl Geomat, Sherbrooke, PQ, Canada
[4] Univ Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
来源
IMAGE PROCESSING ON LINE | 2022年 / 12卷
关键词
tree bark surface analysis; singularity segmentation; relief map; LiDAR; mesh centerline; neural network; U-Net;
D O I
10.5201/ipol.2022.369
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The analysis of trunk shape and, in particular, the geometric structures on the bark surface are of main interest for different applications linked to the wood industry or biological studies. Bark singularities are often external records of the history of the development of internal elements. The actors of the forest sector grade the trees by considering these singularities through standards. In this paper, we propose a method using terrestrial LiDAR data to automatically segment singularities on tree surfaces. It is based on the construction of a relief map combined with a convolutional neural network. The algorithms and the source code are available with an online demonstration allowing to test the defect detection without any software installation.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [11] AN UNSUPERVISED CNN-BASED HYPERSPECTRAL PANSHARPENING METHOD
    Guarino, G.
    Ciotola, M.
    Vivone, G.
    Poggi, G.
    Scarpa, G.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5982 - 5985
  • [12] A CNN-Based Method for Counting Grains within a Panicle
    Gong, Liang
    Fan, Shengzhe
    MACHINES, 2022, 10 (01)
  • [13] CNNPRE: A CNN-Based Protocol Reverse Engineering Method
    Garshasbi, Javad
    Teimouri, Mehdi
    IEEE ACCESS, 2023, 11 : 116255 - 116268
  • [14] LigityScore: A CNN-Based Method for Binding Affinity Predictions
    Azzopardi, Joseph
    Ebejer, Jean Paul
    BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2021, 2022, 1710 : 18 - 44
  • [15] CNN-Based Traffic Volume Video Detection Method
    Chen, Tao
    Li, Xuchuan
    Guo, Congshuai
    Fan, Linkun
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 2435 - 2445
  • [16] A CNN-based Network Failure Prediction Method with Logs
    Ji, Weiliang
    Dun, Shihui
    Chen, Renai
    Wang, Song
    Ling, Qiang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 4087 - 4090
  • [17] CNN-based Asymmetric Detection Method for Appearance Inspection
    Okazaki M.
    Hanayama R.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2022, 88 (09): : 703 - 710
  • [18] BoSR: A CNN-based aurora image retrieval method
    Yang, Xi
    Wang, Nannan
    Song, Bin
    Gao, Xinbo
    NEURAL NETWORKS, 2019, 116 : 188 - 197
  • [19] A CNN-based Flow Correction Method for Fast Preview
    Xiao, Xiangyun
    Wang, Hui
    Yang, Xubo
    COMPUTER GRAPHICS FORUM, 2019, 38 (02) : 431 - 440
  • [20] A new CNN-based method for detection of symmetry axis
    Costantini, G.
    Casali, D.
    Perfetti, R.
    PROCEEDINGS OF THE 2006 10TH IEEE INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS, 2006, : 206 - +