The Cauchy-Riemann equations on product domains

被引:29
作者
Chakrabarti, Debraj [1 ]
Shaw, Mei-Chi [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
DERIVATIVE-NEUMANN PROBLEM; BERGMAN PROJECTION; REGULARITY;
D O I
10.1007/s00208-010-0547-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the L (2) theory for the Cauchy-Riemann equations on product domains provided that the Cauchy-Riemann operator has closed range on each factor. We deduce regularity of the canonical solution on (p, 1)-forms in special Sobolev spaces represented as tensor products of Sobolev spaces on the factors of the product. This leads to regularity results for smooth data.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 35 条
[1]  
[Anonymous], 1978, PRINCIPLES ALGEBRAIC
[2]  
[Anonymous], 1965, Acta Math., V113, P89, DOI [10.1007/BF02391775, DOI 10.1007/BF02391775]
[3]  
[Anonymous], 1955, Varietes Differentiables
[4]  
[Anonymous], 2001, AMSIP STUD ADV MATH
[5]   BEHAVIOR OF THE BERGMAN PROJECTION ON THE DIEDERICH-FORNAESS WORM [J].
BARRETT, DE .
ACTA MATHEMATICA, 1992, 168 (1-2) :1-10
[6]   The Bergman kernel on the intersection of two balls in C2 [J].
Barrett, DE ;
Vassiliadou, S .
DUKE MATHEMATICAL JOURNAL, 2003, 120 (02) :441-467
[7]   REGULARITY OF THE BERGMAN PROJECTION ON DOMAINS WITH TRANSVERSE SYMMETRIES [J].
BARRETT, DE .
MATHEMATISCHE ANNALEN, 1982, 258 (04) :441-446
[8]  
BERTRAMS J, 1986, THESIS RHEINISCHE FR
[9]   SOBOLEV ESTIMATES FOR THE DELTA-BAR-NEUMANN OPERATOR ON DOMAINS IN CN ADMITTING A DEFINING FUNCTION THAT IS PLURISUBHARMONIC ON THE BOUNDARY [J].
BOAS, HP ;
STRAUBE, EJ .
MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (01) :81-88
[10]   EQUIVALENCE OF REGULARITY FOR THE BERGMAN PROJECTION AND THE DELTABAR-NEUMANN OPERATOR [J].
BOAS, HP ;
STRAUBE, EJ .
MANUSCRIPTA MATHEMATICA, 1990, 67 (01) :25-33