Maximal theorems of Menchoff-Rademacher type in non-commutative Lq-spaces

被引:31
作者
Defant, A
Junge, M
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Oldenburg, Fachbereich Math, D-26111 Oldenburg, Germany
基金
美国国家科学基金会;
关键词
maximal function; unconditional seqeunces; non-commutative L-q-spaces;
D O I
10.1016/j.jfa.2002.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Estimates for maximal functions provide the fundamental tool for solving problems on pointwise convergence. This applies in particular for the Menchoff-Rademacher theorem on orthogonal series in L-2 [0,1] and for results due independently to Bennett and Maurey-Nahourn on unconditionally convergent series in L-1 [0,1]. We prove corresponding maximal inequalities in non-commutative L-q-spaces over a semifinite von Neumann algebra. The appropriate formulation for non-commutative, maximal functions originates in Pisier's recent work on non-commutative vector valued L-q-spaces. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 355
页数:34
相关论文
共 30 条
[1]  
Alexits G., 1961, Convergence problems of orthogonal series, International Series of Monographs in Pure and Applied Mathematics
[2]   UNCONDITIONAL CONVERGENCE AND ALMOST EVERYWHERE CONVERGENCE [J].
BENNETT, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (02) :135-155
[3]  
DEFANT A., 1993, North-Holland Math. Stud., V176
[4]  
DEFANT A, UNPUB MAXIMAL THEORE, V2
[5]  
Diestel J., 1995, CAMBRIDGE STUDIES AD, V43
[6]  
DOODS P, 1993, T AM MATH SOC, V339, P717
[7]  
FACK T, 1987, J OPERAT THEOR, V17, P255
[8]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[9]  
Jajte R., 1985, LECT NOTES MATH, V1110
[10]  
JAJTE R, 1991, LECT NOTES MATH, V1477