Effect of indentation speed on deformation behaviors of surface modified silicon: A molecular dynamics study

被引:21
作者
Chen, Juan [1 ]
Shi, Junqin [1 ]
Zhang, Meng [1 ]
Peng, Weixiang [1 ]
Fang, Liang [1 ,2 ]
Sun, Kun [1 ]
Han, Jing [3 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Xiamen Univ, Tan Kah Kee Coll, Sch Mech & Elect Engn, Zhangzhou 363105, Peoples R China
[3] China Univ Min & Technol, Sch Mech & Elect Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Indentation speed; Surface modified silicon; Amorphous SiO2 film; Plastic deformation; Nanoindentation; Molecular dynamics simulation; MECHANICAL-PROPERTIES; PHASE-TRANSFORMATIONS; NANOINDENTATION; GLASS; SIO2; MICROSTRUCTURE; SIMULATIONS; FILMS; LOAD;
D O I
10.1016/j.commatsci.2018.08.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To explore the effect of indentation speed on the deformation behaviors of silicon (Si) surface coated with silica (SiO2) in chemical mechanical polishing process, the nanoindentation test is performed by molecular dynamics (MD) simulation. It is found that the force and indentation depth at which the force drops for high speed are lower than those for low speed, implying the mechanical strength of the bilayer composite increasing with a reducing indention speed. The percentage variations of atom number of coordinated silicon and Si-O bond number consistently indicate that the SiO2 film at higher speed tends to fracture preferentially without sufficient densification and the amount of deformation is also larger. As amorphous SiO2 film tends to fracture during indentation, the original Si-I and newly generated Si-II phases induced by indentation within underlying silicon begin to transform to a Si amorphous structure, which reveals the reason for why the CN5 number for higher indentation speed are larger than those for lower speed at the same indentation depth but with lower CN6 number when indentation depth grows from 4.0 nm to 8.2 nm. Stress analysis indicates the much higher shear stress subjected to silicon at higher speed facilitates the crystalline-to-amorphous transformation.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 46 条
[1]   Stress induced phase transitions in silicon [J].
Budnitzki, M. ;
Kuna, M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 95 :64-91
[2]   Glass breaks like metal, but at the nanometer scale -: art. no. 075504 [J].
Célarié, F ;
Prades, S ;
Bonamy, D ;
Ferrero, L ;
Bouchaud, E ;
Guillot, C ;
Marlière, C .
PHYSICAL REVIEW LETTERS, 2003, 90 (07) :4
[3]   Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads [J].
Chang, Li ;
Zhang, Liangchi .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 506 (1-2) :125-129
[4]   Nanoindentation and deformation behaviors of silicon covered with amorphous SiO2: a molecular dynamic study [J].
Chen, Juan ;
Shi, Junqin ;
Wang, Yunpeng ;
Sun, Jiapeng ;
Han, Jing ;
Sun, Kun ;
Fang, Liang .
RSC ADVANCES, 2018, 8 (23) :12597-12607
[5]   Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation [J].
Cheong, WCD ;
Zhang, LC .
NANOTECHNOLOGY, 2000, 11 (03) :173-180
[6]   Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF [J].
Chowdhury, Sanjib C. ;
Haque, Bazle Z. ;
Gillespie, John W., Jr. .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (22) :10139-10159
[7]   Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity [J].
Chrobak, D. ;
Kim, Kwang-Ho ;
Kurzydlowski, K. J. ;
Nowak, R. .
APPLIED PHYSICS LETTERS, 2013, 103 (07)
[8]   Relaxation processes of densified silica glass [J].
Cornet, Antoine ;
Martinez, Valerie ;
de Ligny, Dominique ;
Champagnon, Bernard ;
Martinet, Christine .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (09)
[9]   Water-silica force field for simulating nanodevices [J].
Cruz-Chu, Eduardo R. ;
Aksimentiev, Aleksei ;
Schulten, Klaus .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (43) :21497-21508
[10]   Direct observation of amophization in load rate dependent nanoindentation studies of crystalline Si [J].
Das, C. R. ;
Dhara, S. ;
Jeng, Yeau-Ren ;
Tsai, Ping-Chi ;
Hsu, H. C. ;
Raj, Baldev ;
Bhaduri, A. K. ;
Albert, S. K. ;
Tyagi, A. K. ;
Chen, L. C. ;
Chen, K. H. .
APPLIED PHYSICS LETTERS, 2010, 96 (25)