Kalman-based Spectro-Temporal ECG Analysis using Deep Convolutional Networks for Atrial Fibrillation Detection

被引:23
作者
Zhao, Zheng [1 ]
Sarkka, Simo [1 ]
Rad, Ali Bahrami [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Rakentajanaukio 2c, Espoo 02150, Finland
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2020年 / 92卷 / 07期
关键词
ECG analysis; Atrial fibrillation; Deep learning; Kalman filter; Spectrogram estimation; AUTOMATIC DETECTION;
D O I
10.1007/s11265-020-01531-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a novel ECG classification framework for atrial fibrillation (AF) detection using spectro-temporal representation (i.e., time varying spectrum) and deep convolutional networks. In the first step we use a Bayesian spectro-temporal representation based on the estimation of time-varying coefficients of Fourier series using Kalman filter and smoother. Next, we derive an alternative model based on a stochastic oscillator differential equation to accelerate the estimation of the spectro-temporal representation in lengthy signals. Finally, after comparative evaluations of different convolutional architectures, we propose an efficient deep convolutional neural network to classify the 2D spectro-temporal ECG data. The ECG spectro-temporal data are classified into four different classes: AF, non-AF normal rhythm (Normal), non-AF abnormal rhythm (Other), and noisy segments (Noisy). The performance of the proposed methods is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experimental results show that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms.
引用
收藏
页码:621 / 636
页数:16
相关论文
共 56 条
  • [1] A deep convolutional neural network model to classify heartbeats
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adam, Muhammad
    Gertych, Arkadiusz
    Tan, Ru San
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 389 - 396
  • [2] Annavarapu A., 2016, Int. J. Cardiovasc. Acad., V2, P151, DOI [DOI 10.1016/J.IJCAC.2016.08.001, 10.1016/j.ijcac.2016.08.001]
  • [3] Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
    Asgari, Shadnaz
    Mehrnia, Alireza
    Moussavi, Maryam
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 60 : 132 - 142
  • [4] Improvements in atrial fibrillation detection for real-time monitoring
    Babaeizadeh, Saeed
    Gregg, Richard E.
    Helfenbein, Eric D.
    Lindauer, James M.
    Zhou, Sophia H.
    [J]. JOURNAL OF ELECTROCARDIOLOGY, 2009, 42 (06) : 522 - 526
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals
    Brueser, Christoph
    Diesel, Jasper
    Zink, Matthias D. H.
    Winter, Stefan
    Schauerte, Patrick
    Leonhardt, Steffen
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2013, 17 (01) : 162 - 171
  • [7] Camm AJ, 2010, EUROPACE, V12, P1360, DOI [10.1093/europace/euq350, 10.1093/eurheartj/ehq278]
  • [8] CLIFFORD GD, 2017, COMPUT CARDIOL CONF, V44
  • [9] Identifying Normal, AF and other Abnormal ECG Rhythms using a Cascaded Binary Classifier
    Datta, Shreyasi
    Puri, Chetanya
    Mukherjee, Ayan
    Banerjee, Rohan
    Choudhury, Anirban Dutta
    Singh, Rituraj
    Ukil, Arijit
    Bandyopadhyay, Soma
    Pal, Arpan
    Khandelwal, Sundeep
    [J]. 2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [10] Ehrendorfer M, 2011, SPECTRAL NUMERICAL W