Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning

被引:33
作者
Ito, Shota [1 ]
Mine, Yuichi [2 ]
Yoshimi, Yuki [1 ]
Takeda, Saori [2 ]
Tanaka, Akari [2 ]
Onishi, Azusa [1 ]
Peng, Tzu-Yu [3 ,4 ]
Nakamoto, Takashi [5 ]
Nagasaki, Toshikazu [5 ]
Kakimoto, Naoya [5 ]
Murayama, Takeshi [2 ]
Tanimoto, Kotaro [1 ]
机构
[1] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Orthodont & Craniofacial Dev Biol, Hiroshima 7348553, Japan
[2] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Med Syst Engn, Hiroshima 7348553, Japan
[3] China Med Univ, Coll Dent, Sch Dent, Taichung 404, Taiwan
[4] Taipei Med Univ, Coll Oral Med, Sch Dent, Taipei 11031, Taiwan
[5] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Oral & Maxillofacial Radiol, Hiroshima 7348553, Japan
关键词
NEURAL-NETWORK; CLASSIFICATION;
D O I
10.1038/s41598-021-04354-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Temporomandibular disorders are typically accompanied by a number of clinical manifestations that involve pain and dysfunction of the masticatory muscles and temporomandibular joint. The most important subgroup of articular abnormalities in patients with temporomandibular disorders includes patients with different forms of articular disc displacement and deformation. Here, we propose a fully automated articular disc detection and segmentation system to support the diagnosis of temporomandibular disorder on magnetic resonance imaging. This system uses deep learning-based semantic segmentation approaches. The study included a total of 217 magnetic resonance images from 10 patients with anterior displacement of the articular disc and 10 healthy control subjects with normal articular discs. These images were used to evaluate three deep learning-based semantic segmentation approaches: our proposed convolutional neural network encoder-decoder named 3DiscNet (Detection for Displaced articular DISC using convolutional neural NETwork), U-Net, and SegNet-Basic. Of the three algorithms, 3DiscNet and SegNet-Basic showed comparably good metrics (Dice coefficient, sensitivity, and positive predictive value). This study provides a proof-of-concept for a fully automated deep learning-based segmentation methodology for articular discs on magnetic resonance images, and obtained promising initial results, indicating that the method could potentially be used in clinical practice for the assessment of temporomandibular disorders.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
[Anonymous], 2015, ARXIV
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning [J].
Bianchi, Jonas ;
de Oliveira Ruellas, Antonio Carlos ;
Goncalves, Joao Roberto ;
Paniagua, Beatriz ;
Prieto, Juan Carlos ;
Styner, Martin ;
Li, Tengfei ;
Zhu, Hongtu ;
Sugai, James ;
Giannobile, William ;
Benavides, Erika ;
Soki, Fabiana ;
Yatabe, Marilia ;
Ashman, Lawrence ;
Walker, David ;
Soroushmehr, Reza ;
Najarian, Kayvan ;
Cevidanes, Lucia Helena Soares .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Evaluation of the reproducibility in the interpretation of magnetic resonance images of the temporomandibular joint [J].
Butzke, K. W. ;
Batista Chaves, K. D. ;
Dias da Silveira, H. E. ;
Dias da Silveira, H. L. .
DENTOMAXILLOFACIAL RADIOLOGY, 2010, 39 (03) :157-161
[5]   A web-based system for neural network based classification in temporomandibular joint osteoarthritis [J].
de Dumast, Priscille ;
Mirabel, Clement ;
Cevidanes, Lucia ;
Ruellas, Antonio ;
Yatabe, Marilia ;
Ioshida, Marcos ;
Ribera, Nina Tubau ;
Michoud, Loic ;
Gomes, Liliane ;
Huang, Chao ;
Zhu, Hongtu ;
Muniz, Luciana ;
Shoukri, Brandon ;
Paniagua, Beatriz ;
Styner, Martin ;
Pieper, Steve ;
Budin, Francois ;
Vimort, Jean-Baptiste ;
Pascal, Laura ;
Prieto, Juan Carlos .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 67 :45-54
[6]   The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset [J].
Desai, Arjun D. ;
Caliva, Francesco ;
Iriondo, Claudia ;
Mortazi, Aliasghar ;
Jambawalikar, Sachin ;
Bagci, Ulas ;
Perslev, Mathias ;
Igel, Christian ;
Dam, Erik B. ;
Gaj, Sibaji ;
Yang, Mingrui ;
Li, Xiaojuan ;
Deniz, Cem M. ;
Juras, Vladimir ;
Regatte, Ravinder ;
Gold, Garry E. ;
Hargreaves, Brian A. ;
Pedoia, Valentina ;
Chaudhari, Akshay S. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (03)
[7]   Deep Learning Enables Automatic Detection and Segmentation of Brain Metastases on Multisequence MRI [J].
Grovik, Endre ;
Yi, Darvin ;
Iv, Michael ;
Tong, Elizabeth ;
Rubin, Daniel ;
Zaharchuk, Greg .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (01) :175-182
[8]   MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation [J].
Ibtehaz, Nabil ;
Rahman, M. Sohel .
NEURAL NETWORKS, 2020, 121 :74-87
[9]   Actual applications of magnetic resonance imaging in dentomaxillofacial region [J].
Johnson, Migi ;
Sreela, L. S. ;
Mathew, Philips ;
Prasad, Twinkle S. .
ORAL RADIOLOGY, 2022, 38 (01) :17-28
[10]   Deep Learning for the Radiographic Detection of Periodontal Bone Loss [J].
Krois, Joachim ;
Ekert, Thomas ;
Meinhold, Leonie ;
Golla, Tatiana ;
Kharbot, Basel ;
Wittemeier, Agnes ;
Doerfer, Christof ;
Schwendicke, Falk .
SCIENTIFIC REPORTS, 2019, 9 (1)