Compactified jacobians and Torelli map

被引:73
作者
Alexeev, V [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
D O I
10.2977/prims/1145475446
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare several constructions of compactified jacobians - using semistable sheaves, semistable projective curves, degenerations of abelian varieties, and combinatorics of cell decompositions - and show that they are equivalent. We give a detailed description of the "canonical compactified jacobian" in degree g - 1. Finally, we explain how Kapranov's compactification of configuration spaces can be understood as a toric analog of the extended Torelli map.
引用
收藏
页码:1241 / 1265
页数:25
相关论文
共 31 条
[1]   Complete moduli in the presence of semiabelian group action [J].
Alexeev, V .
ANNALS OF MATHEMATICS, 2002, 155 (03) :611-708
[2]   COMPACTIFYING THE PICARD SCHEME [J].
ALTMAN, AB ;
KLEIMAN, SL .
ADVANCES IN MATHEMATICS, 1980, 35 (01) :50-112
[3]   COMPACTIFYING THE PICARD SCHEME-II [J].
ALTMAN, AB ;
KLEIMAN, SL .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (01) :10-41
[4]  
ALTMAN AB, 1997, P 9 NORD SUMM SCH NA, P1
[5]  
ALTMAN AB, 1996, ALGEOM9608013
[6]   PRYM VARIETIES AND SCHOTTKY PROBLEM [J].
BEAUVILLE, A .
INVENTIONES MATHEMATICAE, 1977, 41 (02) :149-196
[7]   THE MUMFORD FORM AND THE POLYAKOV MEASURE IN STRING THEORY [J].
BEILINSON, AA ;
MANIN, YI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (03) :359-376
[8]  
Caporaso L., 1994, J AM MATH SOC, V7, P589
[9]  
CORNALBA M, 1989, MODULI CURVES THETA, P560
[10]  
Dolgachev IV, 1998, IHES PUBL MATH, P5