New bounds for moments of continuous random variables

被引:4
作者
Niezgoda, Marek [1 ]
机构
[1] Univ Life Sci Lublin, Dept Appl Math & Comp Sci, PL-20950 Lublin, Poland
关键词
Gruss type inequality; Ostrowski-Gruss type inequality; Moments of random variable; OSTROWSKI-GRUSS TYPE; NUMERICAL QUADRATURE-RULES; ERROR-BOUNDS; INEQUALITIES; IMPROVEMENT;
D O I
10.1016/j.camwa.2010.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some Gruss and Ostrowski-Gruss type inequalities are applied to estimate the moments of continuous random variables whose probability density function is in LP-space. Some results of Kumar are generalized [P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval, Comput. Math. Appl. 48 (2004) 257-273; P. Kumar, The Ostrowski type moment integral inequalities and moment-bounds for continuous random variables, Comput. Math. Appl. 49 (2005) 1929-1940]. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3130 / 3138
页数:9
相关论文
共 21 条
[1]   Improvement of some Ostrowski-Gruss type inequalities [J].
Cheng, XL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) :109-114
[2]  
Dragomir S.S., 2003, J. Inequal. Pure Appl. Math., V4, P1
[3]   An inequality of Ostrowski-Gruss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules [J].
Dragomir, SS ;
Wang, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (11) :15-20
[4]   Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules [J].
Dragomir, SS ;
Wang, S .
APPLIED MATHEMATICS LETTERS, 1998, 11 (01) :105-109
[5]  
FINK A. M., 1999, ANAL GEOMETRIC INEQU
[7]   The Ostrowski type moment integral inequalities and moment-bounds for continuous random variables [J].
Kumar, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) :1929-1940
[8]   Inequalities involving moments of a continuous random variable defined over a finite interval [J].
Kumar, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (1-2) :257-273
[9]  
Kumar P., 2002, J INEQUAL PURE APPL, V3
[10]   Gruss-type inequalities [J].
Li, X ;
Mohapatra, RN ;
Rodriguez, RS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) :434-443