Application of Artificial Intelligence to Cardiovascular Computed Tomography

被引:8
作者
Yang, Dong Hyun [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Cardiac Imaging Ctr,Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Cardiac Imaging Ctr,Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
关键词
CT; Artificial intelligence; Deep learning; Heart; FRACTIONAL FLOW RESERVE; CT ANGIOGRAPHY; CARDIAC CT; DIAGNOSTIC PERFORMANCE; NOISE-REDUCTION; SEGMENTATION; NETWORKS; DISEASE;
D O I
10.3348/kjr.2020.1314
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Cardiovascular computed tomography (CT) is among the most active fields with ongoing technical innovation related to image acquisition and analysis. Artificial intelligence can be incorporated into various clinical applications of cardiovascular CT, including imaging of the heart valves and coronary arteries, as well as imaging to evaluate myocardial function and congenital heart disease. This review summarizes the latest research on the application of deep learning to cardiovascular CT. The areas covered range from image quality improvement to automatic analysis of CT images, including methods such as calcium scoring, image segmentation, and coronary artery evaluation.
引用
收藏
页码:1597 / 1608
页数:12
相关论文
共 55 条
  • [1] CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases
    Ahn, Imjin
    Na, Wonjun
    Kwon, Osung
    Yang, Dong Hyun
    Park, Gyung-Min
    Gwon, Hansle
    Kang, Hee Jun
    Jeong, Yeon Uk
    Yoo, Jungsun
    Kim, Yunha
    Jun, Tae Joon
    Kim, Young-Hak
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [2] Identification and Quantification of Cardiovascular Structures From CCTA An End-to-End, Rapid, Pixel-Wise, Deep-Learning Method
    Baskaran, Lohendran
    Maliakal, Gabriel
    Al'Aref, Subhi J.
    Singh, Gurpreet
    Xu, Zhuoran
    Michalak, Kelly
    Dolan, Kristina
    Gianni, Umberto
    van Rosendael, Alexander
    van den Hoogen, Inge
    Han, Donghee
    Stuijfzand, Wijnand
    Pandey, Mohit
    Lee, Benjamin C.
    Lin, Fay
    Pontone, Gianluca
    Knaapen, Paul
    Marques, Hugo
    Bax, Jeroen
    Berman, Daniel
    Chang, Hyuk-Jae
    Shaw, Leslee J.
    Min, James K.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2020, 13 (05) : 1163 - 1171
  • [3] Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy
    Benz, Dominik C.
    Benetos, Georgios
    Rampidis, Georgios
    von Felten, Elia
    Bakula, Adam
    Sustar, Aleksandra
    Kudura, Ken
    Messerli, Michael
    Fuchs, Tobias A.
    Gebhard, Catherine
    Pazhenkottil, Aju P.
    Kaufmann, Philipp A.
    Buechel, Ronny R.
    [J]. JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (05) : 444 - 451
  • [4] Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data
    Brunner, Gerd
    Chittajallu, Deepak R.
    Kurkure, Uday
    Kakadiaris, Ioannis A.
    [J]. INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2010, 26 (07) : 829 - 838
  • [5] Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT
    Bruns, Steffen
    Wolterink, Jelmer M.
    Takx, Richard A. P.
    van Hamersvelt, Robbert W.
    Sucha, Dominika
    Viergever, Max A.
    Leiner, Tim
    Isgum, Ivana
    [J]. MEDICAL PHYSICS, 2020, 47 (10) : 5048 - 5060
  • [6] Automated Agatston Score Computation in non-ECG Gated CT Scans Using Deep Learning
    Cano-Espinosa, Carlos
    Gonzalez, German
    Washko, George R.
    Cazorla, Miguel
    San Jose Estepar, Ratil
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [7] Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning
    Cao, Long
    Shi, Ruiqiong
    Ge, Yangyang
    Xing, Lei
    Zuo, Panli
    Jia, Yan
    Liu, Jie
    He, Yuan
    Wang, Xinhao
    Luan, Shaoliang
    Chai, Xiangfei
    Guo, Wei
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
  • [8] Deep Learning for Cardiac Image Segmentation: A Review
    Chen, Chen
    Qin, Chen
    Qiu, Huaqi
    Tarroni, Giacomo
    Duan, Jinming
    Bai, Wenjia
    Rueckert, Daniel
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [9] Automated extraction of left atrial volumes from two-dimensional computer tomography images using a deep learning technique
    Chen, Hung-Hsun
    Liu, Chih-Min
    Chang, Shih-Lin
    Chang, Paul Yu-Chun
    Chen, Wei-Shiang
    Pan, Yo-Ming
    Fang, Ssu-Ting
    Zhan, Shan-Quan
    Chuang, Chieh-Mao
    Lin, Yenn-Jiang
    Kuo, Ling
    Wu, Mei-Han
    Chen, Chun-Ku
    Chang, Ying-Yueh
    Shiu, Yang-Che
    Chen, Shih-Ann
    Lu, Henry Horng-Shing
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2020, 316 : 272 - 278
  • [10] Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium
    Coenen, Adriaan
    Kim, Young-Hak
    Kruk, Mariusz
    Tesche, Christian
    De Geer, Jakob
    Kurata, Akira
    Lubbers, Marisa L.
    Daemen, Joost
    Itu, Lucian
    Rapaka, Saikiran
    Sharma, Puneet
    Schwemmer, Chris
    Persson, Anders
    Schoepf, U. Joseph
    Kepka, Cezary
    Yang, Dong Hyun
    Nieman, Koen
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)