The convolution of functions and distributions

被引:9
作者
Fisher, B [1 ]
Tas, K
机构
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
[2] Cankaya Univ, Dept Math, Ankara, Turkey
关键词
distribution; dirac delta function; convolution;
D O I
10.1016/j.jmaa.2005.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-commutative convolution f * g of two distributions f and g in V is defined to be the limit of the sequence {(f tau(n)) * g}, provided the limit exists, where {tau(n)} is a certain sequence of functions in D converging to 1. It is proved that vertical bar x vertical bar(lambda) * (sgnx vertical bar x vertical bar(mu)) = 2 sin(lambda pi/2)cos(mu pi/2)/sin[(lambda+mu)pi/2] B(lambda+1, mu+1) sgn x vertical bar x vertical bar(lambda+mu+1), for -1 < lambda + mu < 0 and lambda, mu not equal -1, -2,..., where B denotes the Beta function. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:364 / 374
页数:11
相关论文
共 4 条
[1]  
FISHER B, 1987, ZB RAD PRIROD MAT M, V17, P119
[2]  
GELFAND IM, 1964, GENERALIZED FUNCTION, V1
[3]   CONVOLUTION OF GENERALIZED FUNCTIONS [J].
JONES, DS .
QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (94) :145-163
[4]  
van der Corput J. G., 1959, J. Analyse Math., V7, P291