Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell

被引:65
|
作者
Wang, Yulin [1 ,2 ]
Xu, Haokai [1 ]
Zhang, Zhe [1 ]
Li, Hua [2 ]
Wang, Xiaodong [3 ]
机构
[1] Tianjin Univ Commerce, Tianjin Key Lab Refrigerat Technol, Tianjin 300134, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315200, Zhejiang, Peoples R China
[3] North China Elect Power Univ, Res Ctr Engn Thermophys, Beijing 102206, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Gradient polytetrafluoroethylene distributions; of a gas diffusion layer; Liquid water transport; Lattice Boltzmann method; LIQUID WATER TRANSPORT; RAY COMPUTED-TOMOGRAPHY; PTFE CONTENT; ELECTRON-TRANSPORT; PEMFC; WETTABILITY; MICROSTRUCTURE; PERFORMANCE; MANAGEMENT; IMPACT;
D O I
10.1016/j.apenergy.2022.119248
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The content and distribution of polytetrafluoroethylene are key factors that determine liquid transport behaviors in gas diffusion layers and, thus, the performance of proton exchange membrane fuel cells. In this study, by employing a stochastic algorithm, the two-dimensional microstructure of a representative gas diffusion layer with the real distributed property of polytetrafluoroethylene was reconstructed. Subsequently, the influence of polytetrafluoroethylene content and gradient distributions on liquid water transport behaviors was examined by implementing a multiphase lattice Boltzmann method. The results supported the findings that an increased content of polytetrafluoroethylene in the conventional gas diffusion layer favors liquid removal, but an extremely high content could cause a marked decrease in the corresponding effective porosity of the gas diffusion layer, hence weakening cell performance. The simulation found that the optimal polytetrafluoroethylene content for the conventional gas diffusion layer was 10 wt%. More importantly, the study reveals that a reasonably higher polytetrafluoroethylene content in the inlet region of the gas diffusion layer benefits the enhancement of water drainage. Compared with the conventional gas diffusion layer with a polytetrafluoroethylene content of 10 wt%, the optimal bigradient and trigradient polytetrafluoroethylene gas diffusion layer exhibits a lower liquid water saturation, a shorter steady-state time of liquid water and gas, and an effective porosity increased by 4.2% and 5.8%, indicating higher water drainage performance. The study here can provide guidelines for the design of high-performance fuel cells with a gradient gas diffusion layer.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of porosity gradient in cathode gas diffusion layer on electrochemical performance of proton exchange membrane fuel cells
    Yang, Guogang
    Wang, Hao
    Su, Fengmin
    Li, Shian
    Zhang, Guoling
    Sun, Juncai
    Shen, Qiuwan
    Jiang, Ziheng
    Liao, Jiadong
    Chen, Pengyu
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (07) : 1598 - 1605
  • [42] Degradation mechanism analysis of substrate and microporous layer of gas diffusion layer in proton exchange membrane fuel cell
    Xu, Keyi
    Di, Qian
    Sun, Fengman
    Chen, Ming
    Wang, Haijaing
    FUEL, 2024, 358
  • [43] Effect of polytetrafluoroethylene shedding on water and heat transport in the gas diffusion layer of proton exchange membrane fuel cells
    Jiadong Liao
    Guogang Yang
    Qiuwan Shen
    Shian Li
    Ziheng Jiang
    Pengyu Chen
    Shuqian Zhang
    Juncai Sun
    Bing Sun
    Ionics, 2024, 30 : 1489 - 1501
  • [44] Lattice Boltzmann method simulation of ice melting process in the gas diffusion layer of fuel cell
    He, Pu
    Chen, Li
    Mu, Yu-Tong
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 149
  • [45] Gas diffusion layer for proton exchange membrane fuel cells-A review
    Cindrella, L.
    Kannan, A. M.
    Lin, J. F.
    Saminathan, K.
    Ho, Y.
    Lin, C. W.
    Wertz, J.
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 146 - 160
  • [46] Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells
    Kim, Kwang Nam
    Kang, Jung Ho
    Lee, Sang Gun
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF POWER SOURCES, 2015, 278 : 703 - 717
  • [47] Influence of laser-perforated gas diffusion layer on mass transfer and performance of proton exchange membrane fuel cell
    Jia, Hekun
    Yu, Yongsheng
    Yin, Bifeng
    Dong, Fei
    Xie, Xuan
    Xu, Sheng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (13) : 18634 - 18647
  • [48] Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell
    Wang, Xueke
    Chen, Sitong
    Fan, Zhaohu
    Li, Weiwei
    Wang, Shubo
    Li, Xue
    Zhao, Yang
    Zhu, Tong
    Xie, Xiaofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (50) : 29995 - 30003
  • [49] Effect of capillary pressure gradient in microporous layer on proton exchange membrane fuel cell performance
    Sim, Jaebong
    Kang, Minsoo
    Min, Kyoungdoug
    Lee, Eunsook
    Jyoung, Jy-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (40) : 17762 - 17777
  • [50] Simulation of the purging process of liquid water in a gas diffusion layer with a wetting gradient using the lattice Boltzmann method
    Liao, Jiadong
    Yang, Guogang
    Shen, Qiuwan
    Li, Shian
    Jiang, Ziheng
    Wang, Hao
    Zhang, Guoling
    Li, Zheng
    Sun, Bing
    TRANSPORT IN POROUS MEDIA, 2023, 148 (02) : 335 - 353