Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell

被引:65
|
作者
Wang, Yulin [1 ,2 ]
Xu, Haokai [1 ]
Zhang, Zhe [1 ]
Li, Hua [2 ]
Wang, Xiaodong [3 ]
机构
[1] Tianjin Univ Commerce, Tianjin Key Lab Refrigerat Technol, Tianjin 300134, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315200, Zhejiang, Peoples R China
[3] North China Elect Power Univ, Res Ctr Engn Thermophys, Beijing 102206, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Gradient polytetrafluoroethylene distributions; of a gas diffusion layer; Liquid water transport; Lattice Boltzmann method; LIQUID WATER TRANSPORT; RAY COMPUTED-TOMOGRAPHY; PTFE CONTENT; ELECTRON-TRANSPORT; PEMFC; WETTABILITY; MICROSTRUCTURE; PERFORMANCE; MANAGEMENT; IMPACT;
D O I
10.1016/j.apenergy.2022.119248
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The content and distribution of polytetrafluoroethylene are key factors that determine liquid transport behaviors in gas diffusion layers and, thus, the performance of proton exchange membrane fuel cells. In this study, by employing a stochastic algorithm, the two-dimensional microstructure of a representative gas diffusion layer with the real distributed property of polytetrafluoroethylene was reconstructed. Subsequently, the influence of polytetrafluoroethylene content and gradient distributions on liquid water transport behaviors was examined by implementing a multiphase lattice Boltzmann method. The results supported the findings that an increased content of polytetrafluoroethylene in the conventional gas diffusion layer favors liquid removal, but an extremely high content could cause a marked decrease in the corresponding effective porosity of the gas diffusion layer, hence weakening cell performance. The simulation found that the optimal polytetrafluoroethylene content for the conventional gas diffusion layer was 10 wt%. More importantly, the study reveals that a reasonably higher polytetrafluoroethylene content in the inlet region of the gas diffusion layer benefits the enhancement of water drainage. Compared with the conventional gas diffusion layer with a polytetrafluoroethylene content of 10 wt%, the optimal bigradient and trigradient polytetrafluoroethylene gas diffusion layer exhibits a lower liquid water saturation, a shorter steady-state time of liquid water and gas, and an effective porosity increased by 4.2% and 5.8%, indicating higher water drainage performance. The study here can provide guidelines for the design of high-performance fuel cells with a gradient gas diffusion layer.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Lattice Boltzmann simulation of the structural degradation of a gas diffusion layer for a proton exchange membrane fuel cell
    Wang, Yulin
    Xu, Haokai
    He, Wei
    Zhao, Yulong
    Wang, Xiaodong
    JOURNAL OF POWER SOURCES, 2023, 556
  • [2] Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method
    Jiang, Ziheng
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Liao, Jiadong
    Wang, Hao
    Espinoza-Andaluz, Mayken
    Ying, Ruomeng
    Pan, Xinxiang
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 190
  • [3] Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Impact of gas diffusion layer and microporous layer degradation on effective transport properties
    Sarkezi-Selsky, Patrick
    Schmies, Henrike
    Latz, Arnulf
    Jahnke, Thomas
    JOURNAL OF POWER SOURCES, 2023, 556
  • [4] Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Parametric studies on capillary hysteresis
    Sarkezi-Selsky, Patrick
    Schmies, Henrike
    Kube, Alexander
    Latz, Arnulf
    Jahnke, Thomas
    JOURNAL OF POWER SOURCES, 2022, 535
  • [5] Pore-scale study of two-phase flow in the gas diffusion layer of proton exchange membrane fuel cells: The impact of polytetrafluoroethylene content and gradient distribution
    Li, Shian
    Chen, Pengyu
    Shen, Qiuwan
    Zhang, Shuqian
    Liao, Jiadong
    Jiang, Ziheng
    Gao, Pengyun
    Andersson, Martin
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [6] Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method
    Yan, Song
    Yang, Mingyang
    Sun, Chuanyu
    Xu, Sichuan
    ENERGIES, 2023, 16 (16)
  • [7] Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method
    Chen, Li
    Luan, Hui-Bao
    He, Ya-Ling
    Tao, Wen-Quan
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2012, 48 (07) : 712 - 726
  • [8] Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method
    Li Chen
    Hui-Bao Luan
    Ya-Ling He
    Wen-Quan Tao
    Russian Journal of Electrochemistry, 2012, 48 : 712 - 726
  • [9] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)
  • [10] Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells
    Yu, Shuchun
    Li, Xiaojin
    Li, Jin
    Liu, Sa
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 301 - 306