High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3
The highly conserved Arg in the so-called DRY motif (Asp-Arg-Tyr) at the intracellular end of transmembrane helix 3 is in general considered as an essential residue for G protein coupling in rhodopsin-like seven transmembrane (7TM) receptors. In the open reading frame 74 (ORF74) receptor encoded by equine herpesvirus 2 (EHV2), the DRY motif is substituted with a DTW motif. Nevertheless, this receptor signaled with high constitutive activity through Gi as determined by a receptor-mediated inhibition of forskolin-induced cAMP-production and by an induction of the serum response element-driven transcriptional activity through a pertussis toxin-sensitive manner. Gs and Gq were not activated constitutively as determined by the lack of inositol phosphate turnover and activities of the three transcription factors: cAMP response element-binding protein (CREB), nuclear factor-kappa B, and nuclear factor of activated T cells. Coexpression of the ORF74-EHV2 receptor with the promiscuous G protein Gqi4myr supported the constitutive Gi activation as determined by inositol phosphate turnover and CREB activation. The constitutive activity was inhibited by non-peptide inverse agonists with micromolar potencies, and the chemokine CXCL6 acted as a high-affinity agonist. It is noteworthy that reconstitution of the DRY motif resulted in a 4- to 5-fold decrease of the constitutive activity. Both the wild type and the receptor with the reconstituted DRY motif were expressed at the cell surface as indicated by immunohistochemistry and enzyme-linked immunosorbent assay analysis. It is concluded that the Arg of the DRY motif in transmembrane helix 3 is not essential for G protein coupling based on the constitutive as well as the ligand-mediated activity observed for ORF74-EHV2.