Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation

被引:58
作者
Sun, Junzhe [1 ]
Shi, Jun [2 ]
Xu, Junling [1 ]
Chen, Xiaoting [1 ]
Zhang, Zhonghua [1 ]
Peng, Zhangquan [2 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Elect Chem, Changchun 130022, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Mechanical alloying; Dealloying; Nanoporous alloy; Methanol; Oxygen reduction reaction; HYDROGEN-PEROXIDE; MONOLAYER ELECTROCATALYSTS; CATALYTIC-ACTIVITY; GOLD CATALYSTS; FUEL-CELLS; OXIDATION; CATHODE; METAL; FE; NI;
D O I
10.1016/j.jpowsour.2015.01.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel ultrafine nanoporous Pt-Cu alloy with a Pt:Cu stoichiometric ratio of 3:1 (np-Pt3Cu) has been prepared by mechanical alloying and subsequent two-step chemical dealloying. The obtained np-Pt3Cu has uniform and bicontinuous ligament(metal)-channel(void) structure with the ligament size of 3.3 +/- 0.7 nm. To explore its potential application in energy conversion reactions, the np-Pt3Cu alloy has been examined as electrocatalyst for the operating reactions in direct methanol fuel cells (DMFCs). Compared with the commercial JM Pt/C, a benchmark catalyst extensively used in fuel cell research, the np-Pt3Cu alloy demonstrates better performance in both the methanol electro-oxidation and oxygen reduction reactions in acidic medium. Theoretical calculations reveal that the electronic structure of Pt has been modified with the shift of Pt d-band center due to alloying with Cu, which can decrease CO poisoning and enhance the methanol oxidation and oxygen reduction reaction activities. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:334 / 344
页数:11
相关论文
共 57 条
[1]  
[Anonymous], 2006, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.200504386
[2]   RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®:: H2O2 production in PEMFC cathode conditions [J].
Antoine, O ;
Durand, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (07) :839-844
[3]   Investigation of bimetallic Pt-M/C as DMFC cathode catalysts [J].
Baglio, V. ;
Stassi, A. ;
Di Blasi, A. ;
D'Urso, C. ;
Antonucci, V. ;
Arico, A. S. .
ELECTROCHIMICA ACTA, 2007, 53 (03) :1360-1364
[4]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[5]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[6]   A Three-Dimensional Gold-Decorated Nanoporous Copper Core-Shell Composite for Electrocatalysis and Nonenzymatic Biosensing [J].
Chen, L. Y. ;
Fujita, T. ;
Ding, Y. ;
Chen, M. W. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (14) :2279-2285
[7]   Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J].
Chen, Zhongwei ;
Waje, Mahesh ;
Li, Wenzhen ;
Yan, Yushan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) :4060-4063
[8]   ROLE OF HYDROGEN PEROXIDE IN REDUCTION OF OXYGEN AT PLATINUM ELECTRODES [J].
DAMJANOVIC, A ;
GENSHAW, MA ;
BOCKRIS, JOM .
JOURNAL OF PHYSICAL CHEMISTRY, 1966, 70 (11) :3761-+
[9]   ROLE OF HYDROGEN PEROXIDE IN OXYGEN REDUCTION AT PLATINUM IN H2SO4 SOLUTION [J].
DAMJANOVIC, A ;
GENSHAW, MA ;
BOCKRIS, JO .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1967, 114 (05) :466-+
[10]   Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst [J].
Dutta, Indrajit ;
Carpenter, Michael K. ;
Balogh, Michael P. ;
Ziegelbauer, Joseph M. ;
Moylan, Thomas E. ;
Atwan, Mohammed H. ;
Irish, Nicholas P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16309-16320