Chaotic behavior in a dissipative non-ideal periodically kicked rotator

被引:9
作者
Chacón, R
García-Hoz, AM
机构
[1] Univ Extremadura, Escuela Ingn Ind, Dept Elect & Ingn Electromecan, E-06071 Badajoz, Spain
[2] Univ Castilla La Mancha, Escuela Univ Politecn, Dept Fis Aplicada, E-13400 Ciudad Real, Spain
关键词
D O I
10.1016/S0375-9601(01)00134-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behavior of a damped kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width is investigated. We discuss physical conditions for the results to be independent of the particular choice of the pulse waveform. Analytical (Melnikov analysis) and numerical (Lyapunov exponents) results show that the extension of chaos in parameter space reaches a maximum as the pulse width is varied. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 32 条
[1]  
ACHESON D, 1998, CALCULUS CHAOS, pCH12
[2]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[3]  
ARNOLD VI, 1987, MATH METHODS CLASSIC, P113
[4]  
Arrowsmith D.K., 1990, INTRO DYNAMICAL SYST
[5]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[6]   STOCHASTIC NOISE AND CHAOTIC TRANSIENTS [J].
BLACKBURN, JA ;
GRONBECHJENSEN, N ;
SMITH, HJT .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :908-911
[7]   STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM [J].
BLACKBURN, JA ;
SMITH, HJT ;
GRONBECHJENSEN, N .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (10) :903-908
[8]   PERIODIC OSCILLATIONS AND ATTRACTING BASINS FOR A PARAMETRICALLY EXCITED PENDULUM [J].
CAPECCHI, D ;
BISHOP, SR .
DYNAMICS AND STABILITY OF SYSTEMS, 1994, 9 (02) :123-143
[9]   Periodically kicked hard oscillators [J].
Cecchi, G. A. ;
Gonzalez, D. L. ;
Magnasco, M. O. ;
Mindlin, G. B. ;
Piro, O. ;
Santillan, A. J. .
CHAOS, 1993, 3 (01) :51-62
[10]   Chaos and geometrical resonance in the damped pendulum subjected to periodic pulses [J].
Chacon, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) :1477-1483